Intelligent Data and Security - Artificial technology developed in recent years. It is an intelligent system that can perform tasks without human intervention. AI can be used for various purposes, such as speech recognition, face recognition, etc. AI can be used for good or bad purposes, depending on how it is implemented. The discuss the application of AI in data security technology and its advantages over traditional security methods. We will focus on the good use of AI by analyzing the impact of AI on the development of big data security technology. AI can be used to enhance security technology by using machine learning algorithms, which can analyze large amounts of data and identify patterns that cannot be detected automatically by humans. The computer big data security technology platform based on artificial intelligence in this paper is the process of creating a system that can identify and prevent malicious programs. The system must be able to detect all types of threats, including viruses, worms, Trojans and spyware. It should also be able to monitor network activity and respond quickly in the event of an attack.
Authored by Yu Miao
Intelligent Data and Security - Intelligent Systems for Personal Data Cyber Security is a critical component of the Personal Information Management of Medicaid Enterprises. Intelligent Systems for Personal Data Cyber Security combines components of Cyber Security Systems with Human-Computer Interaction. It also uses the technology and principles applied to the Internet of Things. The use of software-hardware concepts and solutions presented in this report is, in the authors’ opinion, some step in the working-out of the Intelligent Systems for Personal Data Cyber Security in Medicaid Enterprises. These concepts may also be useful for developers of these types of systems.
Authored by Alexey Zalozhnev, Vasily Ginz, Anatoly Loktionov
Intelligent Data and Security - In the field of airport passenger security, a new type of security inspection equipment called intelligent passenger security equipment is applied widely, which can significantly improve the efficiency of airport security screening and passenger satisfaction. This paper establishes a security check channel model based on intelligent passenger security check equipment, and studies the factors affecting the efficiency of airport security screening, such as the number of baggage unloading points, baggage loading points, secondary inspection points, etc. A simulation model of security check channel is established based on data from existing intelligent passenger security check equipment and data collected from Beijing Daxing Airport. Equipment utilization and queue length data is obtained by running the simulation model. According to the data, the bottleneck is that the manual inspection process takes too long, and the utilization rate of the baggage unloading point is too low. For the bottleneck link, an optimization scheme is proposed. With more manual check points and secondary inspection points and less baggage unloading points, the efficiency of airport security screening significantly increases by running simulation model. Based on the optimized model, the effect of baggage unloading point and baggage loading point on efficiency is further studied. The optimal parameter configuration scheme under the expected efficiency is obtained. This research can assist engineers to find appropriate equipment configuration quickly and instruct the airport to optimize the arrangement of security staff, which can effectively improve the efficiency of airport security screening and reduce the operating costs of airport.
Authored by Bo Li, Yupeng Jia, Chengxue Jin
Intelligent Data and Security - Tourism is one of the main sources of income in Australia. The number of tourists will affect airlines, hotels and other stakeholders. Predicting the arrival of tourists can make full preparations for welcoming tourists. This paper selects Queensland Tourism data as intelligent data. Carry out data visualization around the intelligent data, establish seasonal ARIMA model, find out the characteristics and predict. In order to improve the accuracy of prediction. Based on the tourism data around Queensland, build a 10 layer Back Propagation neural network model. It is proved that the network shows good performance for the data prediction of this paper.
Authored by Luoyifan Zhong
Intelligent Data and Security - As a new industry integrated by computing, communication, networking, electronics, and automation technology, the Internet of Vehicles (IoV) has been widely concerned and highly valued at home and abroad. With the rapid growth of the number of intelligent connected vehicles, the data security risks of the IoV have become increasingly prominent, and various attacks on data security emerge in an endless stream. This paper firstly introduces the latest progress on the data security policies, regulations, standards, technical routes in major countries and regions, and international standardization organizations. Secondly, the characteristics of the IoV data are comprehensively analyzed in terms of quantity, standard, timeliness, type, and cross-border transmission. Based on the characteristics, this paper elaborates the security risks such as privacy data disclosure, inadequate access control, lack of identity authentication, transmission design defects, cross-border flow security risks, excessive collection and abuse, source identification, and blame determination. And finally, we put forward the measures and suggestions for the security development of IoV data in China.
Authored by Jun Sun, Dong Liu, Yang Liu, Chuang Li, Yumeng Ma
Intelligent Data and Security - Problems such as the increase in the number of private vehicles with the population, the rise in environmental pollution, the emergence of unmet infrastructure and resource problems, and the decrease in time efficiency in cities have put local governments, cities, and countries in search of solutions. These problems faced by cities and countries are tried to be solved in the concept of smart cities and intelligent transportation by using information and communication technologies in line with the needs. While designing intelligent transportation systems (ITS), beyond traditional methods, big data should be designed in a state-of-the-art and appropriate way with the help of methods such as artificial intelligence, machine learning, and deep learning. In this study, a data-driven decision support system model was established to help the business make strategic decisions with the help of intelligent transportation data and to contribute to the elimination of public transportation problems in the city. Our study model has been established using big data technologies and business intelligence technologies: a decision support system including data sources layer, data ingestion/ collection layer, data storage and processing layer, data analytics layer, application/presentation layer, developer layer, and data management/ data security layer stages. In our study, the decision support system was modeled using ITS data supported by big data technologies, where the traditional structure could not find a solution. This paper aims to create a basis for future studies looking for solutions to the problems of integration, storage, processing, and analysis of big data and to add value to the literature that is missing within the framework of the model. We provide both the lack of literature, eliminate the lack of models before the application process of existing data sets to the business intelligence architecture and a model study before the application to be carried out by the authors.
Authored by Kutlu Sengul, Cigdem Tarhan, Vahap Tecim
Intelligent Data and Security - The recent 5G networks aim to provide higher speed, lower latency, and greater capacity; therefore, compared to the previous mobile networks, more advanced and intelligent network security is essential for 5G networks. To detect unknown and evolving 5G network intrusions, this paper presents an artificial intelligence (AI)-based network threat detection system to perform data labeling, data filtering, data preprocessing, and data learning for 5G network flow and security event data. The performance evaluations are first conducted on two well-known datasets-NSL-KDD and CICIDS 2017; then, the practical testing of proposed system is performed in 5G industrial IoT environments. To demonstrate detection against network threats in real 5G environments, this study utilizes the 5G model factory, which is downscaled to a real smart factory that comprises a number of 5G industrial IoT-based devices.
Authored by Jonghoon Lee, Hyunjin Kim, Chulhee Park, Youngsoo Kim, Jong-Geun Park
Intelligent Data and Security - Nowadays, smart cities (SCs) use technologies and different types of data collected to improve the lifestyles of their citizens. Indeed, connected smart vehicles are technologies used for an SC’s intelligent traffic monitoring systems (ITMSs). However, most proposed monitoring approaches do not consider realtime monitoring. This paper presents real-time data processing for an intelligent traffic monitoring dashboard using the Hadoop ecosystem dashboard components. Many data are available due to our proposed monitoring approach, such as the total number of vehicles on different routes and data on trucks within a radius (10KM) of a specific point given. Based on our generated data, we can make real-time decisions to improve circulation and optimize traffic flow.
Authored by Ikram Hamdaoui, Mohamed Fissaoui, Khalid Makkaoui, Zakaria Allali
Intelligent Data and Security - The application of mobile intelligent terminal in the environment is very complex, and its own computing capacity is also very limited, so it is vulnerable to malicious attacks. The security classification of mobile intelligent terminals can effectively ensure the security of their use. Therefore, a security classification method for mobile intelligent terminals based on multi-source data fusion is proposed. The Boolean value is used to count the multi-source data of the mobile intelligent terminal, and the word frequency method is used to calculate the weight of the multi-source data of the mobile intelligent terminal. The D-S evidence theory is used to complete the multi-source data fusion of the mobile intelligent terminal and implement the multi-source data fusion processing of the mobile intelligent terminal. On this basis, the security level permission value of mobile intelligent terminal is calculated to achieve the security level division of mobile intelligent terminal based on multi-source data fusion. The experimental results show that the accuracy of mobile intelligent terminal security classification is higher than 96\% and the classification time is less than 3.8 ms after the application of the proposed method. Therefore, the security level of mobile intelligent terminals after the application of this method is high, and the security performance of mobile intelligent terminals is strong, which can effectively improve the accuracy of security classification and shorten the time of security classification.
Authored by Wei Deng, Wei Liu, Xinlin Liu, Jian Zhang
Intelligent Data and Security - The introduction of the study primarily emphasises the significance of utilising block chain technologies with the possibility of privacy and security benefits from the 5G Network. One may state that the study’s primary focus is on all the advantages of adopting block chain technology to safeguard everyone’s access to crucial data by utilizing intelligent contracts to enhance the 5G network security model on information security operations.Our literature evaluation for the study focuses primarily on the advantages advantages of utilizing block chain technology advance data security and privacy, as well as their development and growth. The whole study paper has covered both the benefits and drawbacks of employing the block chain technology. The literature study part of this research article has, on the contrary hand, also studied several approaches and tactics for using the blockchain technology facilities. To fully understand the circumstances in this specific case, a poll was undertaken. It was possible for the researchers to get some real-world data in this specific situation by conducting a survey with 51 randomly selected participants.
Authored by Ranjeet Yadav, Ritambhara, Karthik Vaigandla, G Ghantasala, Rajesh Singh, Durgaprasad Gangodkar
Intellectual Property Security - In order to meet the needs of intellectual property protection and controlled sharing of scientific research sensitive data, a mechanism is proposed for security protection throughout “transfer, store and use” process of sensitive data which based on blockchain. This blockchain bottom layer security is reinforced. First, the encryption algorithm used is replaced by the national secret algorithm and the smart contract is encapsulated as API at the gateway level. Signature validation is performed when the API is used to prevent illegal access. Then the whole process of data up-chain, storage and down-chain is encrypted, and a mechanism of data structure query and data query condition construction based on blockchain smart is provided to ensure that the data is “usable and invisible”. Finally, data access control is ensured through role-based and hierarchical protection, and the blockchain base developed has good extensibility, which can meet the requirement of sensitive data security protection in scientific research filed and has broad application prospects.
Authored by Cheng Cheng, Zixiang Liu, Feng Zhao, Xiang Wang, Feng Wu
Intellectual Property Security - Hardware IPs are assumed to be roots-of-trust in complex SoCs. However, their design and security verification are still heavily dependent on manual expertise. Extensive research in this domain has shown that even cryptographic modules may lack information flow security, making them susceptible to remote attacks. Further, when an SoC is in the hands of the attacker, physical attacks such as fault injection are possible. This paper introduces EISec, a novel tool utilizing symbolic execution for exhaustive analysis of hardware IPs. EISec operates at the pre-silicon stage on the gate level netlist of a design. It detects information flow security violations and generates the exhaustive set of control sequences that reproduces them. We further expand its capabilities to quantify the confusion and diffusion present in cryptographic modules and to analyze an FSM s susceptibility to fault injection attacks. The proposed methodology efficiently explores the complete input space of designs utilizing symbolic execution. In short, EISec is a holistic security analysis tool to help hardware designers capture security violations early on and mitigate them by reporting their triggers.
Authored by Farhaan Fowze, Muhtadi Choudhury, Domenic Forte
Intellectual Property Security - Artificial intelligence creation comes into fashion and has brought unprecedented challenges to intellectual property law. In order to study the viewpoints of AI creation copyright ownership from professionals in different institutions, taking the papers of AI creation on CNKI from 2016 to 2021, we applied orthogonal design and analysis of variance method to construct the dataset. A kernel-SVM classifier with different kernel methods in addition to some shallow machine learning classifiers are selected in analyzing and predicting the copyright ownership of AI creation. Support vector machine (svm) is widely used in statistics and the performance of SVM method is closely related to the choice of the kernel function. SVM with RBF kernel surpasses the other seven kernel-SVM classifiers and five shallow classifier, although the accuracy provided by all of them was not satisfactory. Various performance metrics such as accuracy, F1-score are used to evaluate the performance of KSVM and other classifiers. The purpose of this study is to explore the overall viewpoints of AI creation copyright ownership, investigate the influence of different features on the final copyright ownership and predict the most likely viewpoint in the future. And it will encourage investors, researchers and promote intellectual property protection in China.
Authored by Xinjia Xie, Yunxiao Guo, Jiangting Yin, Shun Gai, Han Long
Intellectual Property Security - The rapid improvement of computer and network technology not only promotes the improvement of productivity and facilitates people s life, but also brings new threats to production and life. Cyberspace security has attracted more and more attention. Different from traditional cyberspace security, APT attacks on key networks or infrastructure, with the main goal of stealing intellectual property, confidential information or sabotage, seriously threatening the interests and security of governments, enterprises and scientific research institutions. Timely detection and blocking is particularly important. The purpose of this paper is to study the security of software supply chain in power industry based on BAS technology. The experimental data shows that Type 1 projects account for the least amount and Type 2 projects account for the highest proportion. Type 1 projects have high unit price contracts and high profits, but the number is small and the time for signing orders is long.
Authored by Bo Jin, Zheng Zhou, Fei Long, Huan Xu, Shi Chen, Fan Xia, Xiaoyan Wei, Qingyao Zhao
Intellectual Property Security - Embedded systems involve an integration of a large number of intellectual property (IP) blocks to shorten chip s time to market, in which, many IPs are acquired from the untrusted third-party suppliers. However, existing IP trust verification techniques cannot provide an adequate security assurance that no hardware Trojan was implanted inside the untrusted IPs. Hardware Trojans in untrusted IPs may cause processor program execution failures by tampering instruction code and return address. Therefore, this paper presents a secure RISC-V embedded system by integrating a Security Monitoring Unit (SMU), in which, instruction integrity monitoring by the fine-grained program basic blocks and function return address monitoring by the shadow stack are implemented, respectively. The hardware-assisted SMU is tested and validated that while CPU executes a CoreMark program, the SMU does not incur significant performance overhead on providing instruction security monitoring. And the proposed RISC-V embedded system satisfies good balance between performance overhead and resource consumption.
Authored by Zhun Zhang, Qiang Hao, Dongdong Xu, Jiqing Wang, Jinhui Ma, Jinlei Zhang, Jiakang Liu, Xiang Wang
Intellectual Property Security - Due to its decentralized trust mechanism, blockchain is increasingly used as a trust intermediary for multi-party cooperation to reduce the cost and risk of maintaining centralized trust nowadays. And as the requirements for privacy and high throughput, consortium blockchain is widely used in data sharing and business cooperation in practical application scenarios. Nowadays, the protection of traditional medicine has been regarded as human intangible cultural heritage in recent years, but this kind of protection still faces the problem that traditional medicine prescriptions are unsuitable for disclosure and difficult to protect. Hyperledger is a consortium blockchain featuring authorized access, high throughput, and tamper-resistance, making it ideal for privacy protection and information depository in traditional medicine protection. This study proposes a solution for intellectual property protection of traditional medicine by using a blockchain platform to record prescription iterations and clinical trial data. The privacy and confidentiality of Hyperledger can keep intellectual property information safe and private. In addition, the author proposes to invite the Patent Offices and legal institutions to join the blockchain network, maintain users properties and issue certificates, which can provide a legal basis for rights protection when infringement occurs. Finally, the researchers have built a system corresponding to the scheme and tested the system. The test outcomes of the system can explain the usability of the system. And through the test of system throughput, under low system configuration, it can reach about 200 query operations per second, which can meet the application requirements of relevant organizations and governments.
Authored by Jinkai Li, Jie Yuan, Yue Xiao
Intellectual Property Security - [Purpose/meaning] In this paper, a unified scheme based on blockchain technology to realize the three modules of intellectual property confirmation, utilization, and protection of rights at the application layer is constructed, to solve the problem of unbalanced and inadequate resource distribution and development level in the field of industrial intellectual property. [Method/process] Based on the application of the core technology of blockchain in the field of intellectual property, this paper analyzes the pain points in the current field of intellectual property, and selects matching blockchain types according to the protection of intellectual property and the different decisions involved in the transaction process, to build a heterogeneous multi-chain model based on blockchain technology. [Conclusion] The heterogeneous multi-chain model based on Polkadot[1] network is proposed to realize the intellectual property protection scheme of a heterogeneous multi-chain model, to promote collaborative design and product development between regions, and to make up for the shortcomings of technical exchange, and weaken the phenomenon of "information island" in a certain extent. [Limitation/deficiency] The design of smart contracts in the field of intellectual property, the development of cross-chain protocols, and the formulation of national standards for blockchain technology still need to be developed and improved. At the same time, the intellectual property protection model designed in this paper needs to be verified in the application of practical cases.
Authored by Weinan Sha, Tianyu Luo, Jiewu Leng, Zisheng Lin
Intellectual Property Security - Smart contracts are an attractive aspect of blockchain technology. A smart contract is a piece of executable code that runs on top of the blockchain and is used to facilitate, execute, and enforce agreements between untrustworthy parties without the need for a third party. This paper offers a review of the literature on smart contract applications in intellectual property management. The goal is to look at technology advancements and smart contract deployment in this area. The theoretical foundation of many papers published in recent years is used as a source of theoretical and implementation research for this purpose. According to the literature review we conducted, smart contracts function automatically, control, or document legally significant events and activities in line with the contract agreement s terms. This is a relatively new technology that is projected to deliver solutions for trust, security, and transparency across a variety of areas. An exploratory strategy was used to perform this literature review.
Authored by C. Wanigasooriya, A. Gunasekara, K. Kottegoda
Intellectual Property Security - The goals, objectives and criteria of the effectiveness of the creation, maintenance and use of the Digital Information Fund of Intellectual Property (DIFIP) are considered. A formalized methodology is proposed for designing DIFIPs, increasing its efficiency and quality, based on a set of interconnected models, methods and algorithms for analysis, synthesis and normalization distributed information management of DIFIP s structure; classification of databases users of patent and scientific and technical information; synthesis of optimal logical structures of the DIFIP database and thematic databases; assessing the quality of the database and ensuring the required level of data security.
Authored by Vladimir Kulba, Vladimir Sirotyuk
Intellectual Property Security - In the process of crowdsourced testing service, the intellectual property of crowdsourced testing has been faced with problems such as code plagiarism, difficulties in confirming rights and unreliability of data. Blockchain is a decentralized, tamper-proof distributed ledger, which can help solve current problems. This paper proposes an intellectual property right confirmation system oriented to crowdsourced testing services, combined with blockchain, IPFS (Interplanetary file system), digital signature, code similarity detection to realize the confirmation of crowdsourced testing intellectual property. The performance test shows that the system can meet the requirements of normal crowdsourcing business as well as high concurrency situations.
Authored by Song Huang, Zhen Yang, Changyou Zheng, Yang Wang, Jinhu Du, Yixian Ding, Jinyong Wan
Insider Threat - Compare to outside threats, insider threats that originate within targeted systems are more destructive and invisible. More importantly, it is more difficult to detect and mitigate these insider threats, which poses significant cyber security challenges to an industry control system (ICS) tightly coupled with today’s information technology infrastructure. Currently, power utilities rely mainly on the authentication mechanism to prevent insider threats. If an internal intruder breaks the protection barrier, it is hard to identify and intervene in time to prevent harmful damage. Based on the existing in-depth security defense system, this paper proposes an insider threat protection scheme for ICSs of power utilities. This protection scheme can conduct compliance check by taking advantage of the characteristics of its business process compliance and the nesting of upstream and downstream business processes. Taking the Advanced Metering Infrastructures (AMIs) in power utilities as an example, the potential insider threats of violation and misoperation under the current management mechanism are identified after the analysis of remote charge control operation. According to the business process, a scheme of compliance check for remote charge control command is presented. Finally, the analysis results of a specific example demonstrate that the proposed scheme can effectively prevent the consumers’ power outage due to insider threats.
Authored by Qingqing Chen, Mi Zhou, Ziwen Cai, Sheng Su
Insider Threat - Insider threats have high risk and concealment characteristics, which makes traditional anomaly detection methods less effective in insider threat detection. Existing detection methods ignore the logical relationship between user behaviors and the consistency of behavior sequences among homogeneous users, resulting in poor model effects. We propose an insider threat detection method based on internal user heterogeneous graph embedding. Firstly, according to the characteristics of CERT data, comprehensively consider the relationship between users, the time sequence, and logical relationship, and construct a heterogeneous graph. In the second step, according to the characteristics of heterogeneous graphs, the embedding learning of graph nodes is carried out according to random walk and Word2vec. Finally, we propose an Insider Threat Detection Design (ITDD) model which can map and the user behavior sequence information into a high-dimensional feature space. In the CERT r5.2 dataset, compared with a variety of traditional machine learning methods, the effect of our method is significantly better than the final result.
Authored by Chaofan Zheng, Wenhui Hu, Tianci Li, Xueyang Liu, Jinchan Zhang, Litian Wang
Insider Threat - Web services are growing demand with fundamental advancements and have given more space to researchers for improving security of all real world applications. Accessing and get authenticated in many applications on web services, user discloses their password and other privacy data to the server for authentication purposes. These shared information should be maintained by the server with high security, otherwise it can be used for illegal purposes for any authentication breach. Protecting the applications from various attacks is more important. Comparing the security threats, insider attacks are most challenging to identify due to the fact that they use the authentication of legitimate users and their privileges to access the application and may cause serious threat to the application. Insider attacks has been studied in previous researchers with different security measures, however there is no much strong work proposed. Various security protocols were proposed for defending insider attackers. The proposed work focused on insider attack protection through Elgamal cryptography technique. The proposed work is much effective on insider attacks and also defends against various attacks. The proposed protocol is better than existing works. The key computation cost and communication cost is relatively low in this proposed work. The proposed work authenticates the application by parallel process of two way authentication mechanism through Elgamal algorithm.
Authored by Sai Vemuri, Gogineni Chaitanya
Insider Threat - Among the greatest obstacles in cybersecurity is insider threat, which is a well-known massive issue. This anomaly shows that the vulnerability calls for specialized detection techniques, and resources that can help with the accurate and quick detection of an insider who is harmful. Numerous studies on identifying insider threats and related topics were also conducted to tackle this problem are proposed. Various researches sought to improve the conceptual perception of insider risks. Furthermore, there are numerous drawbacks, including a dearth of actual cases, unfairness in drawing decisions, a lack of self-optimization in learning, which would be a huge concern and is still vague, and the absence of an investigation that focuses on the conceptual, technological, and numerical facets concerning insider threats and identifying insider threats from a wide range of perspectives. The intention of the paper is to afford a thorough exploration of the categories, levels, and methodologies of modern insiders based on machine learning techniques. Further, the approach and evaluation metrics for predictive models based on machine learning are discussed. The paper concludes by outlining the difficulties encountered and offering some suggestions for efficient threat identification using machine learning.
Authored by Nagabhushana Babu, M Gunasekaran
Insider Threat - In recent years, data security incidents caused by insider threats in distributed file systems have attracted the attention of academia and industry. The most common way to detect insider threats is based on user profiles. Through analysis, we realize that based on existing user profiles are not efficient enough, and there are many false positives when a stable user profile has not yet been formed. In this work, we propose personalized user profiles and design an insider threat detection framework, which can intelligently detect insider threats for securing distributed file systems in real-time. To generate personalized user profiles, we come up with a time window-based clustering algorithm and a weighted kernel density estimation algorithm. Compared with non-personalized user profiles, both the Recall and Precision of insider threat detection based on personalized user profiles have been improved, resulting in their harmonic mean F1 increased to 96.52\%. Meanwhile, to reduce the false positives of insider threat detection, we put forward operation recommendations based on user similarity to predict new operations that users will produce in the future, which can reduce the false positive rate (FPR). The FPR is reduced to 1.54\% and the false positive identification rate (FPIR) is as high as 92.62\%. Furthermore, to mitigate the risks caused by inaccurate authorization for users, we present user tags based on operation content and permission. The experimental results show that our proposed framework can detect insider threats more effectively and precisely, with lower FPR and high FPIR.
Authored by Wu Xin, Qingni Shen, Ke Feng, Yutang Xia, Zhonghai Wu, Zhenghao Lin