The technology described in this paper allows two or more air-gapped computers with passive speakers to discreetly exchange data between them while they are in the same room. The suggested solution takes advantage of the audio chip’s HDA Jack Retask capability, which enables speakers to be attached to it to be switched from output devices to input devices, turning them into microphones. Details of the implementation, technical background, and attack model are discussed. The reversed speakers nonetheless operate effectively in the near-ultrasonic frequency range (18kHz to 24kHz), despite not being intended to function as microphones. The analysis of practical factors for the effective application of the suggested strategy continues. The findings have important ramifications for safe data transfer between air-gapped systems and emphasise the necessity of extra security measures to thWart such assaults.
Authored by S Suraj, Meenu Mohan, Suma S
Urban Air Mobility is envisioned as an on-demand, highly automated and autonomous air transportation modality. It requires the use of advanced sensing and data communication technologies to gather, process, and share flight-critical data. Where this sharing of mix-critical data brings opportunities, if compromised, presents serious cybersecurity threats and safety risks due to the cyber-physical nature of the airborne vehicles. Therefore the avionics system design approach of adhering to functional safety standards (DO-178C) alone is inadequate to protect the mission-critical avionics functions from cyber-attacks. To approach this challenge, the DO-326A/ED-202A standard provides a baseline to effectively manage cybersecurity risks and to ensure the airworthiness of airborne systems. In this regard, this paper pursues a holistic cybersecurity engineering and bridges the security gap by mapping the DO-326A/ED-202A system security risk assessment activities to the Threat Analysis and Risk Assessment process. It introduces Resilient Avionics Architecture as an experimental use case for Urban Air Mobility by apprehending the DO-326A/ED-202A standard guidelines. It also presents a comprehensive system security risk assessment of the use case and derives appropriate risk mitigation strategies. The presented work facilitates avionics system designers to identify, assess, protect, and manage the cybersecurity risks across the avionics system life cycle.
Authored by Fahad Siddiqui, Alexander Ahlbrecht, Rafiullah Khan, Sena Tasdemir, Henry Hui, Balmukund Sonigara, Sakir Sezer, Kieran McLaughlin, Wanja Zaeske, Umut Durak
Wireless Sensor Networks (WSN s) have gained prominence in technology for diverse applications, such as environmental monitoring, health care, smart agriculture, and industrial automation. Comprising small, low-power sensor nodes that sense and collect data from the environment, process it locally, and communicate wirelessly with a central sink or gateway, WSN s face challenges related to limited energy resources, communication constraints, and data processing requirements. This paper presents a comprehensive review of the current state of research in WSN s, focusing on aspects such as network architecture, communication protocols, energy management techniques, data processing and fusion, security and privacy, and applications. Existing solutions are critically analysed regarding their strengths, weaknesses, research gaps, and future directions for WSNs.
Authored by Santosh Jaiswal, Anshu Dwivedi
AMLA is the novel Auckland Model for Logical Airgaps developed at University of Auckland. Convergence of IT-OT use cases are rapidly being implemented and mostly in an ad-hoc manner leaving large security holes. This paper introduces the first novel AMLA logical airgap design pattern; and showcases the AMLA’s layered defense system via New Zealand case study for the electricity distribution sector to propose how logical airgaps can be beneficial in New Zealand. Thus, able to provide security even to legacy methods and devices without replacing them to make the newer convergence use cases work economically and securely.
Authored by Abhinav Chopra, Nirmal-Kumar Nair, Rizki Rahayani
Wireless communication enables an ingestible device to send sensor information and support external on-demand operation while in the gastrointestinal (GI) tract. However, it is challenging to maintain stable wireless communication with an ingestible device that travels inside the dynamic GI environment as this environment easily detunes the antenna and decreases the antenna gain. In this paper, we propose an air-gap based antenna solution to stabilize the antenna gain inside this dynamic environment. By surrounding a chip antenna with 1 2 mms of air, the antenna is isolated from the environment, recovering its antenna gain and the received signal strength by 12 dB or more according to our in vitro and in vivo evaluation in swine. The air gap makes margin for the high path loss, enabling stable wireless communication at 2.4 GHz that allows users to easily access their ingestible devices by using mobile devices with Bluetooth Low Energy (BLE). On the other hand, the data sent or received over the wireless medium is vulnerable to being eavesdropped on by nearby devices other than authorized users. Therefore, we also propose a lightweight security protocol. The proposed protocol is implemented in low energy without compromising the security level thanks to the base protocol of symmetric challenge-response and Speck, the cipher that is optimized for software implementation.
Authored by Yeseul Jeon, Saurav Maji, So-Yoon Yang, Muhammed Thaniana, Adam Gierlach, Ian Ballinger, George Selsing, Injoo Moon, Josh Jenkins, Andrew Pettinari, Niora Fabian, Alison Hayward, Giovanni Traverso, Anantha Chandrakasan
The notion that ships, marine vessels and off-shore structures are digitally isolated is quickly disappearing. Affordable and accessible wireless communication technologies (e.g., short-range radio, long-range satellite) are quickly removing any air-gaps these entities have. Commercial, defence, and personal ships have a wide range of communication systems to choose from, yet some can weaken the overall ship security. One of the most significant information technologies (IT) being used today is satellite-based communications. While the backbone of this technology is often secure, third-party devices may introduce vulnerabilities. Within maritime industries, the market for satellite communication devices has also grown significantly, with a wide range of products available. With these devices and services, marine cyber-physical systems are now more interconnected than ever. However, some of these off-the-shelf products can be more insecure than others and, as shown here, can decrease the security of the overall maritime network and other connected devices. This paper examines the vulnerability of an existing, off-the-shelf product, how a novel attack-chain can compromise the device, how that introduces vulnerabilities to the wider network, and then proposes solutions to the found vulnerabilities.
Authored by Jordan Gurren, Avanthika Harish, Kimberly Tam, Kevin Jones
Air-gapped workstations are separated from the Internet because they contain confidential or sensitive information. Studies have shown that attackers can leak data from air-gapped computers with covert ultrasonic signals produced by loudspeakers. To counteract the threat, speakers might not be permitted on highly sensitive computers or disabled altogether - a measure known as an ’audio gap.’ This paper presents an attack enabling adversaries to exfiltrate data over ultrasonic waves from air-gapped, audio-gapped computers without external speakers. The malware on the compromised computer uses its built-in buzzer to generate sonic and ultrasonic signals. This component is mounted on many systems, including PC workstations, embedded systems, and server motherboards. It allows software and firmware to provide error notifications to a user, such as memory and peripheral hardware failures. We examine the different types of internal buzzers and their hardware and software controls. Despite their limited technological capabilities, such as 1-bit sound, we show that sensitive data can be encoded in sonic and ultrasonic waves. This is done using pulse width modulation (PWM) techniques to maintain a carrier wave with a dynamic range. We also show that malware can evade detection by hiding in the frequency bands of other components (e.g., fans and power supplies). We implement the attack using a PC transmitter and smartphone app receiver. We discuss transmission protocols, modulation, encoding, and reception and present the evaluation of the covert channel as well. Based on our tests, sensitive data can be exfiltrated from air-gapped computers through its built- in buzzer. A smartphone can receive data from up to six meters away at 100 bits per second.
Authored by Mordechai Guri
The rapid advancement of technology in aviation business management, notably through the implementation of location-independent aerodrome control systems, is reshaping service efficiency and cost-effectiveness. However, this emphasis on operational enhancements has resulted in a notable gap in cybersecurity incident management proficiency. This study addresses the escalating sophistication of the cybersecurity threat landscape, where malicious actors target critical safety information, posing risks from disruptions to potential catastrophic incidents. The paper employs a specialized conceptualization technique, derived from prior research, to analyze the interplays between malicious software and degraded modes operations in location-independent aerodrome control systems. Rather than predicting attack trajectories, this approach prioritizes the development of training paradigms to rigorously evaluate expertise across engineering, operational, and administrative levels in air traffic management domain. This strategy offers a proactive framework to safeguard critical infrastructures, ensuring uninterrupted, reliable services, and fortifying resilience against potential threats. This methodology promises to cultivate a more secure and adept environment for aerodrome control operations, mitigating vulnerabilities associated with malicious interventions.
Authored by Gabor Horvath
The medium-voltage (MV) power distribution networks have a complex topology, and this can easily cause air arc faults. However, the current of the air arc is low, and the arc temperature is only a few thousand Kelvin. In this case, the arc is in non-local thermodynamic equilibrium (non-LTE). The LTE state of arc is the basis for the establishment of arc model and the calculation of transport coefficient. In this paper, the non-LTE effect of the MV AC air arc is studied by the moiré deflection and the optical emission spectroscopy (OES) techniques.
Authored by Tong Zhou, Qing Yang, Tao Yuan
This paper presents AirKeyLogger - a novel radio frequency (RF) keylogging attack for air-gapped computers.Our keylogger exploits radio emissions from a computer’s power supply to exfiltrate real-time keystroke data to a remote attacker. Unlike hardware keylogging devices, our attack does not require physical hardware. Instead, it can be conducted via a software supply-chain attack and is solely based on software manipulations. Malware on a sensitive, air-gap computer can intercept keystroke logging by using global hooking techniques or injecting malicious code into a running process. To leak confidential data, the processor’s working frequencies are manipulated to generate a pattern of electromagnetic emissions from the power unit modulated by keystrokes. The keystroke information can be received at distances of several meters away via an RF receiver or a smartphone with a simple antenna. We provide related work, discuss keylogging methods and present multi-key modulation techniques. We evaluate our method at various typing speeds and on-screen keyboards as well. We show the design and implementation of transmitter and receiver components and present evaluation findings. Our tests show that malware can eavesdrop on keylogging data in real-time over radio signals several meters away and behind concrete walls from highly secure and air-gapped systems.
Authored by Mordechai Guri