Information-Centric Networking (ICN) has emerged as a perfect match to support data-driven applications. Typically, ICN ensures data integrity and authenticity, by provisioning signed and verifiable data packets. Nonetheless, the ICN cryptography-based security scheme entails increased computational and communication cost, while also necessitates continuous connectivity to the infrastructure. We claim that this security approach requires supportive mechanisms to perform adequately in scenarios involving disruptive connectivity and short-term communication. In this paper, we investigate the applicability of two security approaches, namely the in-force cryptographybased approach and a ‘lighter’ reputation-based one, in ad hoc information-centric networks, and aim to identify the pros and cons of each solution. Our experiments rely on a scenario deemed appropriate for the particular research objective: we selected an ICN-based Flying Ad hoc Network (FANET). We assess the impact of intermittent connectivity, as well as, the associated computational and communication cost, and the dynamics of mobility. Our results demonstrate that the reputation-based approach allows for building trust relations in a fast and lightweight manner, but without requiring permanent connectivity to trusted third parties. Therefore, we argue that the standard ICN security system can be consolidated by integrating reputation-based trust as an essential complementary mechanism.
Authored by Ioanna Kapetanidou, Paulo Mendes, Vassilis Tsaoussidis
Information Centric Networks - One of the most challenging issues facing Internet of Medical Things (IoMT) cyber defense is the complexity of their ecosystem coupled with the development of cyber-attacks. Medical equipments lack built-in security and are increasingly becoming connected. Moving beyond traditional security solutions becomes a necessity to protect patients and organizations. In order to effectively deal with the security risks of networked medical devices in such a complex and heterogeneous system, we need to measure security risks and prioritize mitigation actions. In this context, we propose a Fuzzy AHP-based method to assess security attributes of connected medical devices and compare different device models against a selected profile with regards to the user requirements. The proposal aims to empower user security awareness to make well-educated decisions.
Authored by Sondes Ksibi, Faouzi JAIDI, Adel BOUHOULA
Information Centric Networks - This work expands on our prior work on an architecture and supporting protocols to efficiently integrate constrained devices into an Information-Centric Network-based Internet of Things in a way that is both secure and scalable. In this work, we propose a scheme for addressing additional threats and integrating trust-based behavioral observations and attribute-based access control by leveraging the capabilities of less constrained coordinating nodes at the network edge close to IoT devices. These coordinating devices have better insight into the behavior of their constituent devices and access to a trusted overall security management cloud service. We leverage two modules, the security manager (SM) and trust manager (TM). The former provides data confidentiality, integrity, authentication, and authorization, while the latter analyzes the nodes behavior using a trust model factoring in a set of service and network communication attributes. The trust model allows trust to be integrated into the SM s access control policies, allowing access to resources to be restricted to trusted nodes.
Authored by Nicholas Clark
Information Centric Networks - Named Data Networking (NDN) has been viewed as a promising future Internet architecture. It requires a new access control scheme to prevent the injection of unauthorized data request. In this paper, an access control supported by information service entity (ACISE) is proposed for NDN networks. A trust entity, named the information service entity (ISE), is deployed in each domain for the registration of the consumer and the edge router. The identity-based cryptography (IBC) is used to generate a private key for the authorized consumer at the ISE and to calculate a signature encapsulated in the Interest packet at the consumer. Therefore, the edge router could support the access control by the signature verification of the Interest packets so that no Interest packet from unauthorized consumer could be forwarded or replied. Moreover, shared keys are negotiated between authorized consumers and their edge routers. The subsequent Interest packets would be verified by the message authentication code (MAC) instead of the signature. The simulation results have shown that the ACISE scheme would achieve a similar response delay to the original NDN scheme when the NDN is under no attacks. However, the ACISE scheme is immune to the cache pollution attacks so that it could maintain a much smaller response delay compared to the other schemes when the NDN network is under the attacks.
Authored by Bing Li, Maode Ma, Yonghe Zhang, Feiyu Lai
Information Centric Networks - Tactical Data Link (TDL) is one of the important elements in Network Centric Warfare (NCW). TDL provides the means for rapid exchange of tactical information between air, ground, sea units and command centers. In military operations, TDL has high demands for resilience, responsiveness, reliability, availability and security. MANET has characteristics that are suitable for the combat environment, namely the ability to self-form and self-healing so that this network may be applied to the TDL system. To produce high performance in MANET adapted for TDL system, an efficient MAC Protocol method is needed. This paper provides a survey of several MAC Protocol methods on a tactical MANET. In this paper also suggests some improvements to the MANET MAC protocol to improve TDL system performance.
Authored by Riyanto, Suhono Supangkat, Iskandar
Information Centric Networks - Traffic in a backbone network has high forwarding rate requirements, and as the network gets larger, traffic increases and forwarding rates decrease. In a Software Defined Network (SDN), the controller can manage a global view of the network and control the forwarding of network traffic. A deterministic network has different forwarding requirements for the traffic of different priority levels. Static traffic load balancing is not flexible enough to meet the needs of users and may lead to the overloading of individual links and even network collapse. In this paper, we propose a new backbone network load balancing architecture - EDQN (Edge Deep Q-learning Network), which implements queue-based gate-shaping algorithms at the edge devices and load balancing of traffic on the backbone links. With the advantages of SDN, the link utilization of the backbone network can be improved, the delay in traffic transmission can be reduced and the throughput of traffic during transmission can be increased.
Authored by Xue Zhang, Liang Wei, Shan Jing, Chuan Zhao, Zhenxiang Chen
Information Centric Networks - Named in-network computing is an emerging technology of Named Data Networking (NDN). Through deploying the named computing services/functions on NDN router, the router can utilize its free resources to provide nearby computation for users while relieving the pressure of cloud and network edge. Benefitted from the characteristic of named addressing, named computing services/functions can be easily discovered and migrated in the network. To implement named in-network computing, integrating the computing services as Virtual Machines (VMs) into the software router is a feasible way, but how to effectively deploy the service VMs to optimize the local processing capability is still a challenge. Focusing on this problem, we first give the design of NDN-enabled software router in this paper, then propose a service earning based named service deployment scheme (SE-NSD). For available service VMs, SE-NSD not only considers their popularities but further evaluates their service earnings (processed data amount per CPU cycle). Through modelling the deployment problem as the knapsack problem, SE-NSD determines the optimal service VMs deployment scheme. The simulation results show that, comparing with the popularity-based deployment scheme, SE-NSD can promote about 30\% in-network computing capability while slightly reducing the service invoking RTT of user.
Authored by Bowen Liang, Jianye Tian, Yi Zhu
Information Centric Networks - The 6G wireless communication networks are being studied to build a powerful networking system with global coverage, enhanced spectral/energy/cost efficiency, better intelligent level and security. This paper presents a four-in-one networking paradigm named 3CL-Net that would broaden and strengthen the capabilities of current networking by introducing ubiquitous computing, caching, and intelligence over the communication connection to build 6G-required capabilities. To evaluate the practicability of 3CL-Net, this paper designs a platform based on the 3CL-Net architecture. The platform adopts leader-followers structure that could support all functions of 3CL-Net, but separate missions of 3CL-Net into two parts. Moreover, this paper has implemented part of functions as a prototype, on which some experiments are carried out. The results demonstrate that 3CL-Net is potential to be a practical and effective network paradigm to meet future requirements, meanwhile, 3CL-Net could motivate designs of related platforms as well.
Authored by Yujiao Hu, Qingmin Jia, Hui Liu, Xiaomao Zhou, Huayao Lai, Renchao Xie
Information Centric Networks - The 5G research community is increasingly leveraging the innovative features offered by Information Centric Networking (ICN). However, ICN’s fundamental features, such as in-network caching, make access control enforcement more challenging in an ICN-based 5G deployment. To address this shortcoming, we propose a Blockchain-based Decentralized Authentication Protocol (BDAP) which enables efficient and secure mobile user authentication in an ICN-based 5G network. We show that BDAP is robust against a variety of attacks to which mobile networks and blockchains are particularly vulnerable. Moreover, a preliminary performance analysis suggests that BDAP can reduce the authentication delay compared to the standard 5G authentication protocols.
Authored by Muhammad Hassan, Davide Pesavento, Lotfi Benmohamed
Information Centric Networks - This paper proposes a Mobile IoT optimization method for Next-Generation networks by evaluating a series of named-based techniques implemented in Information-Centric Networking (ICN). The idea is based on the possibility to have a more suitable naming and forwarding mechanism to be implemented in IoT. The main advantage of the method is in achieving a higher success packet rate and data rate by following the proposed technique even when the device is mobile / roaming around. The proposed technique is utilizing a root prefix naming which allows faster process and dynamic increase for content waiting time in Pending Interest Table (PIT). To test the idea, a simulation is carried out by mimicking how IoT can be implemented, especially in smart cities, where a user can also travel and not be static. Results show that the proposed technique can achieve up to a 13\% interest success rate and an 18.7\% data rate increase compared to the well-known implementation algorithms. The findings allow for possible further cooperation of data security factors and ensuring energy reduction through leveraging more processes at the edge node.
Authored by Cutifa Safitri, Quang Nguyen, Media Ayu, Teddy Mantoro
Information Centric Networks - Internet architecture has transformed into a more complex form than it was about a decade back. Today the internet comprises multimedia information where services and web applications have started to shift their focus on content. In our perspective of communication systems, content-centric networking (CCN) proposes a new methodology. The use of cache memory at the network level is an important feature of this new architecture. This cache is intended to store transit details for a set period, and it is hoped that this capability will aid in network quality, especially in a rapidly increasing video streaming situation. Information-centric networking (ICN) is the one architecture that is seen as a possible alternative for shifting the Internet from a host-centric to a content-centric point-of-view. It focuses on data rather than content. CCN is more reliable when it comes to data delivery as it does not need to depend on location for data. CCN architecture is scalable, secure and provides mobility support. In this paper, we implement a ccnchat, a chat testing application, which is created with the help of libraries provided by Palo Alto Research Center (PARC) on local area network (LAN) between two users and demonstrate the working of this local chat application over CCN network that works alongside existing IP infrastructure.
Authored by Kshitij Deshmukh, Avani Jain, Shubhangi Singh, Pronaya Bhattacharya, Vivek Prasad, Mohd Zuhair
Internet of Things (IoT) evolution calls for stringent communication demands, including low delay and reliability. At the same time, wireless mesh technology is used to extend the communication range of IoT deployments, in a multi-hop manner. However, Wireless Mesh Networks (WMNs) are facing link failures due to unstable topologies, resulting in unsatisfied IoT requirements. Named-Data Networking (NDN) can enhance WMNs to meet such IoT requirements, thanks to the content naming scheme and in-network caching, but necessitates adaptability to the challenging conditions of WMNs.In this work, we argue that Software-Defined Networking (SDN) is an ideal solution to fill this gap and introduce an integrated SDN-NDN deployment over WMNs involving: (i) global view of the network in real-time; (ii) centralized decision making; and (iii) dynamic NDN adaptation to network changes. The proposed system is deployed and evaluated over the wiLab.1 Fed4FIRE+ test-bed. The proof-of-concept results validate that the centralized control of SDN effectively supports the NDN operation in unstable topologies with frequent dynamic changes, such as the WMNs.
Authored by Sarantis Kalafatidis, Vassilis Demiroglou, Lefteris Mamatas, Vassilis Tsaoussidis
In response to the vulnerabilities in traditional perimeter-based network security, the zero trust framework is a promising approach to secure modern network systems and address the challenges. The core of zero trust security is agent-centric trust evaluation and trust-based security decisions. The challenges, however, arise from the limited observations of the agent's footprint and asymmetric information in the decision-making. An effective trust policy needs to tradeoff between the security and usability of the network. The explainability of the policy facilitates the human understanding of the policy, the trust of the result, as well as the adoption of the technology. To this end, we formulate a zero-trust defense model using Partially Observable Markov Decision Processes (POMDP), which captures the uncertainties in the observations of the defender. The framework leads to an explainable trust-threshold policy that determines the defense policy based on the trust scores. This policy is shown to achieve optimal performance under mild conditions. The trust threshold enables an efficient algorithm to compute the defense policy while providing online learning capabilities. We use an enterprise network as a case study to corroborate the results. We discuss key factors on the trust threshold and illustrate how the trust threshold policy can adapt to different environments.
Authored by Yunfei Ge, Quanyan Zhu