Currently, research on 5G communication is focusing increasingly on communication techniques. The previous studies have primarily focused on the prevention of communications disruption. To date, there has not been sufficient research on network anomaly detection as a countermeasure against on security aspect. 5g network data will be more complex and dynamic, intelligent network anomaly detection is necessary solution for protecting the network infrastructure. However, since the AI-based network anomaly detection is dependent on data, it is difficult to collect the actual labeled data in the industrial field. Also, the performance degradation in the application process to real field may occur because of the domain shift. Therefore, in this paper, we research the intelligent network anomaly detection technique based on domain adaptation (DA) in 5G edge network in order to solve the problem caused by data-driven AI. It allows us to train the models in data-rich domains and apply detection techniques in insufficient amount of data. For Our method will contribute to AI-based network anomaly detection for improving the security for 5G edge network.
Authored by Hyun-Jin Kim, Jonghoon Lee, Cheolhee Park, Jong-Geun Park
AI systems face potential hardware security threats. Existing AI systems generally use the heterogeneous architecture of CPU + Intelligent Accelerator, with PCIe bus for communication between them. Security mechanisms are implemented on CPUs based on the hardware security isolation architecture. But the conventional hardware security isolation architecture does not include the intelligent accelerator on the PCIe bus. Therefore, from the perspective of hardware security, data offloaded to the intelligent accelerator face great security risks. In order to effectively integrate intelligent accelerator into the CPU’s security mechanism, a novel hardware security isolation architecture is presented in this paper. The PCIe protocol is extended to be security-aware by adding security information packaging and unpacking logic in the PCIe controller. The hardware resources on the intelligent accelerator are isolated in fine-grained. The resources classified into the secure world can only be controlled and used by the software of CPU’s trusted execution environment. Based on the above hardware security isolation architecture, a security isolation spiking convolutional neural network accelerator is designed and implemented in this paper. The experimental results demonstrate that the proposed security isolation architecture has no overhead on the bandwidth and latency of the PCIe controller. The architecture does not affect the performance of the entire hardware computing process from CPU data offloading, intelligent accelerator computing, to data returning to CPU. With low hardware overhead, this security isolation architecture achieves effective isolation and protection of input data, model, and output data. And this architecture can effectively integrate hardware resources of intelligent accelerator into CPU’s security isolation mechanism.
Authored by Rui Gong, Lei Wang, Wei Shi, Wei Liu, JianFeng Zhang
The recent 5G networks aim to provide higher speed, lower latency, and greater capacity; therefore, compared to the previous mobile networks, more advanced and intelligent network security is essential for 5G networks. To detect unknown and evolving 5G network intrusions, this paper presents an artificial intelligence (AI)-based network threat detection system to perform data labeling, data filtering, data preprocessing, and data learning for 5G network flow and security event data. The performance evaluations are first conducted on two well-known datasets-NSL-KDD and CICIDS 2017; then, the practical testing of proposed system is performed in 5G industrial IoT environments. To demonstrate detection against network threats in real 5G environments, this study utilizes the 5G model factory, which is downscaled to a real smart factory that comprises a number of 5G industrial IoT-based devices.
Authored by Jonghoon Lee, Hyunjin Kim, Chulhee Park, Youngsoo Kim, Jong-Geun Park
As artificial intelligent models continue to grow in their capacity and sophistication, they are often trusted with very sensitive information. In the sub-field of adversarial machine learning, developments are geared solely towards finding reliable methods to systematically erode the ability of artificial intelligent systems to perform as intended. These techniques can cause serious breaches of security, interruptions to major systems, and irreversible damage to consumers. Our research evaluates the effects of various white box adversarial machine learning attacks on popular computer vision deep learning models leveraging a public X-ray dataset from the National Institutes of Health (NIH). We make use of several experiments to gauge the feasibility of developing deep learning models that are robust to adversarial machine learning attacks by taking into account different defense strategies, such as adversarial training, to observe how adversarial attacks evolve over time. Our research details how a variety white box attacks effect different components of InceptionNet, DenseNet, and ResNeXt and suggest how the models can effectively defend against these attacks.
Authored by Ilyas Bankole-Hameed, Arav Parikh, Josh Harguess
A growing number of attacks and the introduction of new security standards, e.g. ISO 21434, are increasingly shifting the focus of industry and research to the cybersecurity of vehicles. Being cyber-physical systems, compromised vehicles can pose a safety risk to occupants and the environment. Updates over the air and monitoring of the vehicle fleet over its entire lifespan are therefore established in current and future vehicles. Elementary components of such a strategy are security sensors in the form of firewalls and intrusion detection systems, for example, and an operations center where monitoring and response activities are coordinated. A critical step in defending against, detecting, and remediating attacks is providing knowledge about the vehicle and fleet context. Whether a vehicle is driving on the highway or parked at home, what software version is installed, or what security incidents have occurred affect the legitimacy of data and network traffic. However, current security measures lack an understanding of how to operate in an adjusted manner in different contexts. This work is therefore dedicated to a concept to make security measures for vehicles context-aware. We present our approach, which consists of an object-oriented model of relevant context information within the vehicle and a Knowledge Graph for the fleet. With this approach, various use cases can be addressed, according to the different requirements for the use of context knowledge in the vehicle and operations center.
Authored by Daniel Grimm, Eric Sax
The world has seen a quick transition from hard devices for local storage to massive virtual data centers, all possible because of cloud storage technology. Businesses have grown to be scalable, meeting consumer demands on every turn. Cloud computing has transforming the way we do business making IT more efficient and cost effective that leads to new types of cybercrimes. Securing the data in cloud is a challenging task. Cloud security is a mixture of art and science. Art is to create your own technique and technologies in such a way that the user should be authenticated. Science is because you have to come up with ways of securing your application. Data security refers to a broad set of policies, technologies and controls deployed to protect data application and the associated infrastructure of cloud computing. It ensures that the data has not been accessed by any unauthorized person. Cloud storage systems are considered to be a network of distributed data centers which typically uses cloud computing technologies like virtualization and offers some kind of interface for storing data. Virtualization is the process of grouping the physical storage from multiple network storage devices so that it looks like a single storage device.Storing the important data in the cloud has become an essential argument in the computer territory. The cloud enables the user to store the data efficiently and access the data securely. It avoids the basic expenditure on hardware, software and maintenance. Protecting the cloud data has become one of the burdensome tasks in today’s environment. Our proposed scheme "Certificateless Compressed Data Sharing in Cloud through Partial Decryption" (CCDSPD) makes use of Shared Secret Session (3S) key for encryption and double decryption process to secure the information in the cloud. CC does not use pairing concept to solve the key escrow problem. Our scheme provides an efficient secure way of sharing data to the cloud and reduces the time consumption nearly by 50 percent as compared to the existing mCL-PKE scheme in encryption and decryption process.Distributed Cloud Environment (DCE) has the ability to store the da-ta and share it with others. One of the main issues arises during this is, how safe the data in the cloud while storing and sharing. Therefore, the communication media should be safe from any intruders residing between the two entities. What if the key generator compromises with intruders and shares the keys used for both communication and data? Therefore, the proposed system makes use of the Station-to-Station (STS) protocol to make the channel safer. The concept of encrypting the secret key confuses the intruders. Duplicate File Detector (DFD) checks for any existence of the same file before uploading. The scheduler as-signs the work of generating keys to the key manager who has less task to complete or free of any task. By these techniques, the proposed system makes time-efficient, cost-efficient, and resource efficient compared to the existing system. The performance is analysed in terms of time, cost and resources. It is necessary to safeguard the communication channel between the entities before sharing the data. In this process of sharing, what if the key manager’s compromises with intruders and reveal the information of the user’s key that is used for encryption. The process of securing the key by using the user’s phrase is the key concept used in the proposed system "Secure Storing and Sharing of Data in Cloud Environment using User Phrase" (S3DCE). It does not rely on any key managers to generate the key instead the user himself generates the key. In order to provide double security, the encryption key is also encrypted by the public key derived from the user’s phrase. S3DCE guarantees privacy, confidentiality and integrity of the user data while storing and sharing. The proposed method S3DCE is more efficient in terms of time, cost and resource utilization compared to the existing algorithm DaSCE (Data Security for Cloud Environment with Semi Trusted Third Party) and DACESM (Data Security for Cloud Environment with Scheduled Key Managers).For a cloud to be secure, all of the participating entities must be secure. The security of the assets does not solely depend on an individual s security measures. The neighbouring entities may provide an opportunity to an attacker to bypass the user s defences. The data may compromise due to attacks by other users and nodes within the cloud. Therefore, high security measures are required to protect data within the cloud. Cloudsim allows to create a network that contains a set of Intelligent Sense Point (ISP) spread across an area. Each ISPs will have its own unique position and will be different from other ISPs. Cloud is a cost-efficient solution for the distribution of data but has the challenge of a data breach. The data can be compromised of attacks of ISPs. Therefore, in OSNQSC (Optimized Selection of Nodes for Enhanced in Cloud Environment), an optimized method is proposed to find the best ISPs to place the data fragments that considers the channel quality, distance and the remaining energy of the ISPs. The fragments are encrypted before storing. OSNQSC is more efficient in terms of total upload time, total download time, throughput, storage and memory consumption of the node with the existing Betweenness centrality, Eccentricity and Closeness centrality methods of DROPS (Division and Replication of Data in the Cloud for Optimal Performance and Security).
Authored by Jeevitha K, Thriveni J
The big data platform based on cloud computing realizes the storage, analysis and processing of massive data, and provides users with more efficient, accurate and intelligent Internet services. Combined with the characteristics of college teaching resource sharing platform based on cloud computing mode, the multi-faceted security defense strategy of the platform is studied from security management, security inspection and technical means. In the detection module, the optimization of the support vector machine is realized, the detection period is determined, the DDoS data traffic characteristics are extracted, and the source ID blacklist is established; the triggering of the defense mechanism in the defense module, the construction of the forwarder forwarding queue and the forwarder forwarding capability are realized. Reallocation.
Authored by Zhiyi Xing
Problems such as the increase in the number of private vehicles with the population, the rise in environmental pollution, the emergence of unmet infrastructure and resource problems, and the decrease in time efficiency in cities have put local governments, cities, and countries in search of solutions. These problems faced by cities and countries are tried to be solved in the concept of smart cities and intelligent transportation by using information and communication technologies in line with the needs. While designing intelligent transportation systems (ITS), beyond traditional methods, big data should be designed in a state-of-the-art and appropriate way with the help of methods such as artificial intelligence, machine learning, and deep learning. In this study, a data-driven decision support system model was established to help the business make strategic decisions with the help of intelligent transportation data and to contribute to the elimination of public transportation problems in the city. Our study model has been established using big data technologies and business intelligence technologies: a decision support system including data sources layer, data ingestion/ collection layer, data storage and processing layer, data analytics layer, application/presentation layer, developer layer, and data management/ data security layer stages. In our study, the decision support system was modeled using ITS data supported by big data technologies, where the traditional structure could not find a solution. This paper aims to create a basis for future studies looking for solutions to the problems of integration, storage, processing, and analysis of big data and to add value to the literature that is missing within the framework of the model. We provide both the lack of literature, eliminate the lack of models before the application process of existing data sets to the business intelligence architecture and a model study before the application to be carried out by the authors.
Authored by Kutlu Sengul, Cigdem Tarhan, Vahap Tecim
Intelligent Systems for Personal Data Cyber Security is a critical component of the Personal Information Management of Medicaid Enterprises. Intelligent Systems for Personal Data Cyber Security combines components of Cyber Security Systems with Human-Computer Interaction. It also uses the technology and principles applied to the Internet of Things. The use of software-hardware concepts and solutions presented in this report is, in the authors’ opinion, some step in the working-out of the Intelligent Systems for Personal Data Cyber Security in Medicaid Enterprises. These concepts may also be useful for developers of these types of systems.
Authored by Alexey Zalozhnev, Vasily Ginz, Anatoly Loktionov
The introductory part of the research mainly focuses on the importance of using block chain facilities by using the 5G Network that can be useful for data privacy and security. It can be said that the research mainly focuses on all the benefits of using block chain technology in order to protect all the access of relevant data by implementing intelligent contracts for enhancing the security framework related to the use of 5G networks on the data protection activities. The Literature review of the research mainly concentrates on the benefits and merits of applying the block chain facilities for enhancing both the growth as well as the development of data protection and data privacy. All the merits, as well as demerits of using the block chain facility, have been also discussed throughout the overall research paper. On the other hand, various methods, as well as strategies for applying the block chain facilities, also have been analyzed throughout the literature review section of this research paper. A survey was conducted in this particular scenario to get a clear comprehension of the situation. A survey was conducted with fifty one random people that enable the researches to get a clear picture of the trend while fetching some real life data in this particular scenario.
Authored by Prabhakara Kapula, Gnana Jeslin, Gururaj Hosamani, Prashant Vats, Chetan Shelke, Surendra Shukla
The last decade witnessed a gradual shift from cloudbased computing towards ubiquitous computing, which has put at a greater security risk every element of the computing ecosystem including devices, data, network, and decision making. Indeed, emerging pervasive computing paradigms have introduced an uncharted territory of security vulnerabilities and a wider attack surface, mainly due to network openness, the underlying mechanics that enable intelligent functions, and the deeply integrated physical and cyber spaces. Furthermore, interconnected computing environments now enjoy many unconventional characteristics that mandate a radical change in security engineering tools. This need is further exacerbated by the rapid emergence of new Advanced Persistent Threats (APTs) that target critical infrastructures and aim to stealthily undermine their operations in innovative and intelligent ways. To enable system and network designers to be prepared to face this new wave of dangerous threats, this paper overviews recent APTs in emerging computing systems and proposes a new approach to APTs that is more tailored towards such systems compared to traditional IT infrastructures. The proposed APT lifecycle will inform security decisions and implementation choices in future pervasive networked systems.
Authored by Talal Halabi, Aawista Chaudhry, Sarra Alqahtani, Mohammad Zulkernine
Traditional Web application category recognition is implemented by fingerprint rule matching, which is difficult to extract fingerprint rules and has limited coverage. At present, many improved identification methods semi-automatically extract fingerprints through certain rules and identify Web application categories through clustering or classification algorithms, but still rely on fingerprint rules and human intervention, and the time complexity of classification is too high to process a large amount of data. This paper proposes Multi-layer Simhash Algorithm and combines DBSCAN clustering to realize intelligent identification of Web application types, pioneering the complete automation of fingerprint identification of Web applications. This method has the function of discovering unknown Web applications and predicting unknown application types, and solves the problems of fingerprint rule extraction and manual dependence of Web applications. This paper through the TF-IDF algorithm to extract the Web page text key words and weight, Then, Multi-layer Simhash Algorithm is used to transform text feature words and weights into binary characteristic hash value, at last, the hamming distance between the input Web page and the characteristic hash value of the known category is compared with the radius of the base class, which determines the category of the input Web application. The experimental results show that the accuracy of Web application category recognition and prediction is more than 97\% and 93\% respectively.
Authored by Fuji Han, Dongjun Zhu
By analyzing the design requirements of a secure desktop virtualization information system, this paper proposes the security virtualization technology of "whitelist" security mechanism, the virtualization layer security technology of optimized design, and the virtual machine security technology of resource and network layer isolation. On this basis, this paper constructs the overall architecture of the secure desktop virtualization information system. This paper studies the desktop virtualization technology research based on VMware using VMware server virtualization solution to transform and upgrade the traditional intelligent desktop virtualization system, improve server resource utilization rate, and reduce operation and maintenance costs.
Authored by Honglei Xia
In recent years, in order to continuously promote the construction of safe cities, security monitoring equipment has been widely used all over the country. How to use computer vision technology to realize effective intelligent analysis of violence in video surveillance is very important to maintain social stability and ensure people s life and property safety. Video surveillance system has been widely used because of its intuitive and convenient advantages. However, the existing video monitoring system has relatively single function, and generally only has the functions of monitoring video viewing, query and playback. In addition, relevant researchers pay less attention to the complex abnormal behavior of violence, and relevant research often ignores the differences between violent behaviors in different scenes. At present, there are two main problems in video abnormal behavior event detection: the video data of abnormal behavior is less and the definition of abnormal behavior in different scenes cannot be clearly distinguished. The main existing methods are to model normal behavior events first, and then define videos that do not conform to the normal model as abnormal, among which the learning method of video space-time feature representation based on deep learning shows a good prospect. In the face of massive surveillance videos, it is necessary to use deep learning to identify violent behaviors, so that the machine can learn to identify human actions, instead of manually monitoring camera images to complete the alarm of violent behaviors. Network training mainly uses video data set to identify network training.
Authored by Xuezhong Wang
Wearables Security 2022 - One of the biggest new trends in artificial intelligence is the ability to recognise people s movements and take their actions into account. It can be used in a variety of ways, including for surveillance, security, human-computer interaction, and content-based video retrieval. There have been a number of researchers that have presented vision-based techniques to human activity recognition. Several challenges need to be addressed in the creation of a vision-based human activity recognition system, including illumination variations in human activity recognition, interclass similarity between scenes, the environment and recording setting, and temporal variation. To overcome the above mentioned problem, by capturing or sensing human actions with help of wearable sensors, wearable devices, or IoT devices. Sensor data, particularly one-dimensional time series data, are used in the work of human activity recognition. Using 1D-Convolutional Neural Network (CNN) models, this works aims to propose a new approach for identifying human activities. The Wireless Sensor Data Mining (WISDM) dataset is utilised to train and test the 1D-CNN model in this dissertation. The proposed HAR-CNN model has a 95.2\%of accuracy, which is far higher than that of conventional methods.
Authored by P. Deepan, Santhosh Kumar, B. Rajalingam, Santosh Patra, S. Ponnuthurai
Science of Security 2022 - As a new industry integrated by computing, communication, networking, electronics, and automation technology, the Internet of Vehicles (IoV) has been widely concerned and highly valued at home and abroad. With the rapid growth of the number of intelligent connected vehicles, the data security risks of the IoV have become increasingly prominent, and various attacks on data security emerge in an endless stream. This paper firstly introduces the latest progress on the data security policies, regulations, standards, technical routes in major countries and regions, and international standardization organizations. Secondly, the characteristics of the IoV data are comprehensively analyzed in terms of quantity, standard, timeliness, type, and cross-border transmission. Based on the characteristics, this paper elaborates the security risks such as privacy data disclosure, inadequate access control, lack of identity authentication, transmission design defects, cross-border flow security risks, excessive collection and abuse, source identification, and blame determination. And finally, we put forward the measures and suggestions for the security development of IoV data in China.
Authored by Jun Sun, Dong Liu, Yang Liu, Chuang Li, Yumeng Ma
Object Oriented Security - At present, the traditional substation auxiliary control system is faced with the following four problems: poor real-time capability to abnormal response, high dependence on people when solving malfunctions, the communication, deployment and expansion of different underlying devices, and the lack of security mechanism. To solve these problems or optimize the functions, an intelligent substation auxiliary control system is proposed. The system innovatively applies OPC UA to the construction of the auxiliary control system. First, through the use of OPC UA s unique object-oriented modeling method as well as the joint specification modeling of OPC UA and IEC61850, to solve the data communication problems caused by heterogeneous devices. Second, applying the Client/Server mode to realize the remote access from authorized mobile clients and give instructions, to cope with abnormal conditions, which reduces the dependency on people. Clients of other authorized enterprises are allowed to access the working data of the devices they are interested in, makes full use of massive data and ensures the information security of the system. Third, Pub/Sub mode is applied to enable the underlying devices to communicate directly with each other through the middleware, which reduces the response time of equipment joint debugging and improve the real-time performance. In addition, through OPC UA, the industrial data of the system can be transmitted over the Internet, realizing the combination of the Internet of Things and the Internet, which is an idea of the combination of the two in the future.
Authored by Chun Zhu, Binai Li, Zhengyu Lv, Xiaoyu Zhao
Network Security Architecture - Design a new generation of smart power meter components, build a smart power network, implement power meter safety protection, and complete smart power meter network security protection. The new generation of smart electric energy meters mainly complete legal measurement, safety fee control, communication, control, calculation, monitoring, etc. The smart power utilization structure network consists of the master station server, front-end processor, cryptographic machine and master station to form a master station management system. Through data collection and analysis, the establishment of intelligent energy dispatching operation, provides effective energy-saving policy algorithms and strategies, and realizes energy-smart electricity use manage. The safety protection architecture of the electric energy meter is designed from the aspects of its own safety, full-scenario application safety, and safety management. Own security protection consists of hardware security protection and software security protection. The full-scene application security protection system includes four parts: boundary security, data security, password security, and security monitoring. Security management mainly provides application security management strategies and security responsibility division strategies. The construction of the intelligent electric energy meter network system lays the foundation for network security protection.
Authored by Baofeng Li, Feng Zhai, Yilun Fu, Bin Xu
Malware Classification - Methodologies used for the detection of malicious applications can be broadly classified into static and dynamic analysis based approaches. With traditional signature-based methods, new variants of malware families cannot be detected. A combination of deep learning techniques along with image-based features is used in this work to classify malware. The data set used here is the ‘Malimg’ dataset, which contains a pictorial representation of well-known malware families. This paper proposes a methodology for identifying malware images and classifying them into various families. The classification is based on image features. The features are extracted using the pre-trained model namely VGG16. The samples of malware are depicted as byteplot grayscale images. Features are extracted employing the convolutional layer of a VGG16 deep learning network, which uses ImageNet dataset for the pre-training step. The features are used to train different classifiers which employ SVM, XGBoost, DNN and Random Forest for the classification task into different malware families. Using 9339 samples from 25 different malware families, we performed experimental evaluations and demonstrate that our approach is effective in identifying malware families with high accuracy.
Authored by K. Deepa, K. Adithyakumar, P. Vinod
Malware Analysis and Graph Theory - Nowadays, the popularity of intelligent terminals makes malwares more and more serious. Among the many features of application, the call graph can accurately express the behavior of the application. The rapid development of graph neural network in recent years provides a new solution for the malicious analysis of application using call graphs as features. However, there are still problems such as low accuracy. This paper established a large-scale data set containing more than 40,000 samples and selected the class call graph, which was extracted from the application, as the feature and used the graph embedding combined with the deep neural network to detect the malware. The experimental results show that the accuracy of the detection model proposed in this paper is 97.7\%; the precision is 96.6\%; the recall is 96.8\%; the F1-score is 96.4\%, which is better than the existing detection model based on Markov chain and graph embedding detection model.
Authored by Rui Wang, Jun Zheng, Zhiwei Shi, Yu Tan
Internet-scale Computing Security - The scale of the intelligent networked vehicle market is expanding rapidly, and network security issues also follow. A Situational Awareness (SA) system can detect, identify, and respond to security risks from a global perspective. In view of the discrete and weak correlation characteristics of perceptual data, this paper uses the Fly Optimization Algorithm (FOA) based on dynamic adjustment of the optimization step size to improve the convergence speed, and optimizes the extraction model of security situation element of the Internet of Vehicles (IoV), based on Probabilistic Neural Network (PNN), to improve the accuracy of element extraction. Through the comparison of experimental algorithms, it is verified that the algorithm has fast convergence speed, high precision and good stability.
Authored by Xuan Chen, Fei Li
Internet-scale Computing Security - The big data platform based on cloud computing realizes the storage, analysis and processing of massive data, and provides users with more efficient, accurate and intelligent Internet services. Combined with the characteristics of college teaching resource sharing platform based on cloud computing mode, the multi-faceted security defense strategy of the platform is studied from security management, security inspection and technical means. In the detection module, the optimization of the support vector machine is realized, the detection period is determined, the DDoS data traffic characteristics are extracted, and the source ID blacklist is established; the triggering of the defense mechanism in the defense module, the construction of the forwarder forwarding queue and the forwarder forwarding capability are realized. Reallocation.
Authored by Zhiyi Xing
Internet of Vehicles Security - With the development of urbanization, the number of vehicles is gradually increasing, and vehicles are gradually developing in the direction of intelligence. How to ensure that the data of intelligent vehicles is not tampered in the process of transmission to the cloud is the key problem of current research. Therefore, we have established a data security transmission system based on blockchain. First, we collect and filter vehicle data locally, and then use blockchain technology to transmit key data. Through the smart contract, the key data is automatically and accurately transmitted to the surrounding node vehicles, and the vehicles transmit data to each other to form a transaction and spread to the whole network. The node data is verified through the node data consensus protocol of intelligent vehicle data security transmission system, and written into the block to form a blockchain. Finally, the vehicle user can query the transaction record through the vehicle address. The results show that we can safely and accurately transmit and query vehicle data in the blockchain database.
Authored by Kai Chen, Hongjun Wu, Cheng Xu, Nan Ma, Songyin Dai, Hongzhe Liu
Internet of Vehicles Security - As a new industry integrated by computing, communication, networking, electronics, and automation technology, the Internet of Vehicles (IoV) has been widely concerned and highly valued at home and abroad. With the rapid growth of the number of intelligent connected vehicles, the data security risks of the IoV have become increasingly prominent, and various attacks on data security emerge in an endless stream. This paper firstly introduces the latest progress on the data security policies, regulations, standards, technical routes in major countries and regions, and international standardization organizations. Secondly, the characteristics of the IoV data are comprehensively analyzed in terms of quantity, standard, timeliness, type, and cross-border transmission. Based on the characteristics, this paper elaborates the security risks such as privacy data disclosure, inadequate access control, lack of identity authentication, transmission design defects, cross-border flow security risks, excessive collection and abuse, source identification, and blame determination. And finally, we put forward the measures and suggestions for the security development of IoV data in China.
Authored by Jun Sun, Dong Liu, Yang Liu, Chuang Li, Yumeng Ma
Internet of Vehicles Security - The scale of the intelligent networked vehicle market is expanding rapidly, and network security issues also follow. A Situational Awareness (SA) system can detect, identify, and respond to security risks from a global perspective. In view of the discrete and weak correlation characteristics of perceptual data, this paper uses the Fly Optimization Algorithm (FOA) based on dynamic adjustment of the optimization step size to improve the convergence speed, and optimizes the extraction model of security situation element of the Internet of Vehicles (IoV), based on Probabilistic Neural Network (PNN), to improve the accuracy of element extraction. Through the comparison of experimental algorithms, it is verified that the algorithm has fast convergence speed, high precision and good stability.
Authored by Xuan Chen, Fei Li