At present people can easily share multimedia information on Internet, which leads to serious data security issues. Especially in medical, military and financial fields, images always contain a lot of sensitive information. To safely transmit images among people, many secret image sharing methods are proposed. However, the existing methods can not solve the problems of pixel expansion and high computational complexity of shadow images at the same time. In this paper, we propose an image sharing method by combining sharing matrix and variational hyperprior network, to reduce the pixel expansion and computational complexity of secret image sharing methods. The method uses the variational hyperprior network to encode images. It introduces the hyperprior to effectively catch spatial dependencies in the latent representation, which can compress image with high efficiency. The experimental results show that our method has low computational complexity and high security performance compared with the state-of-the-art approaches. In addition, the proposed method can effectively reduce the pixel expansion when using the sharing matrix to generate shadow images.
Authored by Yuxin Ding, Miaomiao Shao, Cai Nie
The power communication network based on 5G network slicing is an important foundation to support smart grid, and the bearing of small granularity power regulation and control class services depends on the slicing soft isolation technology, and the data isolation between each soft isolation channel is crucial. In this paper, we propose a new symmetric cryptographic algorithm based on random coding, and establish a hybrid encryption method based on this symmetric algorithm, combined with SM2 and SM3 algorithms, which is suitable for encrypting the data of power regulation and control services. It is also verified through simulation that the proposed hybrid encryption method has high encryption efficiency while ensuring security.
Authored by Yunfei Guo, Peng Wu, Wei Huang, Yong Zhang, Jian Meng
Network Reconnaissance - In the battlefield reconnaissance and monitoring environment, the application of Wireless Sensor Network (WSN) requires high timeliness and reliability of data transmission. To meet the battlefield demand, a transmission protocol is designed in this paper. This protocol combines network coding technology to fully play the function of node collaboration in the transmission process and use the channel broadcast characteristics. The data is transmitted in real-time and reliably through the aggregation node to the command control center, providing a real-time update database for the battlefield commander. Through theoretical and simulation analysis, this protocol can meet the requirements of the battlefield reconnaissance and monitoring environmental log, and the system can still maintain better network performance in the condition of low probability of transmission of battlefield environment.
Authored by Gang Qi, Wei Xia, Ronggen Zhao, Jiangbo Zhao
Network Coding - Precise binary code vulnerability detection is a significant research topic in software security. Currently, the majority of software is released in binary form, and the corresponding vulnerability detection approaches for binary code are desired. Existing deep learning-based detection techniques can only detect binary code vulnerabilities but cannot precisely identify the types of vulnerabilities. This paper proposes a Binary code-based Hybrid neural network for Multiclass Vulnerability Detection, dubbed BHMVD. BHMVD generates binary slices according to the control dependence and data dependence of library/API function calls, and then extracts syntax features from binary slices to generate type slices, which can help identify vulnerability types. This paper uses a hybrid neural network of CNN-BLSTM to extract vulnerability features from binary and type slices. The former extracts local features, while the latter extracts global features. Experiment results on 19 types of vulnerabilities show that BHMVD is effective for binary code-based multiclass vulnerability detection, and using a hybrid neural network can improve detection ability.
Authored by Ningning Cui, Liwei Chen, Gewangzi Du, Tongshuai Wu, Chenguang Zhu, Gang Shi
Network Coding - Unmanned Aerial Vehicles (UAVs) are drawing enormous attention in both commercial and military applications to facilitate dynamic wireless communications and deliver seamless connectivity due to their flexible deployment, inherent line-ofsight (LOS) air-to-ground (A2G) channels, and high mobility. These advantages, however, render UAV-enabled wireless communication systems susceptible to eavesdropping attempts. Hence, there is a strong need to protect the wireless channel through which most of the UAV-enabled applications share data with each other. There exist various error correction techniques such as Low Density Parity Check (LDPC), polar codes that provide safe and reliable data transmission by exploiting the physical layer but require high transmission power. Also, the security gap achieved by these error-correction techniques must be reduced to improve the security level. In this paper, we present deep learning (DL) enabled punctured LDPC codes to provide secure and reliable transmission of data for UAVs through the Additive White Gaussian Noise (AWGN) channel irrespective of the computational power and channel state information (CSI) of the Eavesdropper. Numerical result analysis shows that the proposed scheme reduces the Bit Error Rate (BER) at Bob effectively as compared to Eve and the Signal to Noise Ratio (SNR) per bit value of 3.5 dB is achieved at the maximum threshold value of BER. Also, the security gap is reduced by 47.22 \% as compared to conventional LDPC codes.
Authored by Himanshu Sharma, Neeraj Kumar, Raj Tekchandani, Nazeeruddin Mohammad
Network Coding - Software vulnerabilities, caused by unintentional flaws in source codes, are the main root cause of cyberattacks. Source code static analysis has been used extensively to detect the unintentional defects, i.e. vulnerabilities, introduced into the source codes by software developers. In this paper, we propose a deep learning approach to detect vulnerabilities from their LLVM IR representations based on the techniques that have been used in natural language processing. The proposed approach uses a hierarchical process to first identify source codes with vulnerabilities, and then it identifies the lines of codes that contribute to the vulnerability within the detected source codes. This proposed twostep approach reduces the false alarm of detecting vulnerable lines. Our extensive experiment on real-world and synthetic codes collected in NVD and SARD shows high accuracy (about 98\%) in detecting source code vulnerabilities 1.
Authored by Arash Mahyari
Network Coding - With the continuous development of the Internet, artificial intelligence, 5G and other technologies, various issues have started to receive attention, among which the network security issue is now one of the key research directions for relevant research scholars at home and abroad. This paper researches on the basis of traditional Internet technology to establish a security identification system on top of the network physical layer of the Internet, which can effectively identify some security problems on top of the network infrastructure equipment and solve the identified security problems on the physical layer. This experiment is to develop a security identification system, research and development in the network physical level of the Internet, compared with the traditional development of the relevant security identification system in the network layer, the development in the physical layer, can be based on the physical origin of the protection, from the root to solve part of the network security problems, can effectively carry out the identification and solution of network security problems. The experimental results show that the security identification system can identify some basic network security problems very effectively, and the system is developed based on the physical layer of the Internet network, and the protection is carried out from the physical device, and the retransmission symbol error rates of CQ-PNC algorithm and ML algorithm in the experiment are 110 and 102, respectively. The latter has a lower error rate and better protection.
Authored by Yunge Huang
Network Coding - Aiming at the problem of security transmission in the space-terrestrial integrated networks, this paper proposes a physical layer secure transmission architecture based on concatenated LT and LDPC Codes. The outer code LT code adopts real-time random sampling coding, which can form a complex random interconnection structure and fully expand the randomness. The inner code LDPC code generates different codes through the random change of cyclic shift vector, Reduce the node interconnection deterioration caused by randomization on soft decision decoding, and obtain weak randomness high-performance error correction coding through storage optimized high-performance check matrix combined with soft decision decoding. The analysis and simulation results show that the proposed security transmission method not only improves the security of transmission, but also maintains the high transmission efficiency. Therefore it can be applied to the field of secure communication.
Authored by Ruijia Yuan, Tianjiao Xie, Jianhua Zhang
Network Coding - Network Coding (NC) enabled cellular networks can be penetrated by faulty packets that deviates the target nodes from decoding packets received. Even a little amount of pollution can be very quickly spread to remaining packets because of the resource exploitation at intermediary nodes. Numerous methods for protecting against data pollution attacks have been developed in the last few years. Another popular alternative is the Homomorphic Message Authentication Code (HMAC). Hackers can target HMAC by tampering with the end-of-packet tags, known as tag pollution assaults, in order to evade detection. To prevent data pollution and tag pollution assaults, a HMAC-based method can be used using two separate MAC tags. In the 5G wireless communication, small cells and collaborative networks have been extensively investigated. The use of network coding in wireless networks can increase throughput while consuming less power. Strong integrity procedures are essential for a coding environment to combat threats like pollution assaults and take full advantage of network coding. Latency and computation overhead can be reduced while maintaining security by modifying and optimising the existing integrity algorithms. This research focuses on analysing security threats in NC enabled small cells.
Authored by Chanumolu Kumar, Nandhakumar Ramachandran, Ch Priyanka, Spandana Mande
Network Coding - We propose and investigate a novel scheme of delay attack-resistant network based on optical code division multiple access (OCDMA). The bit error rate (BER) is analyzed theoretically, and the closed expression of BER is obtained. The system has a corresponding optimal threshold to minimize the BER in different cases. At the same transmission power, the BER will decrease when the code weight increases. Furthermore, the maximum number of users is different with different code weight and transmission power. Optisystem simulation results show that OCDMA system has delay attack-resistant performance, which can effectively improve the physical layer security of optical network.
Authored by Mandong Liu, Peng Ouyang, Jianhua Ji, Ming Xu
Network Coding - This paper proposes a hybrid encryption scheme for multi-relay (MR) physical-layer network coding (PNC). Based on the three-relay (3R) bidirectional communication model, first, we discuss the throughput performance of the PNC compared with the traditional scheme (TS) and network coding (NC) system. Through the analysis of transmission efficiency, the superior throughput of the PNC system is demonstrated. Then, to further improve the security of the communication system, we give a scheme of advanced encryption standard (AES) and RivestShamir-Adleman (RSA) hybrid encryption, namely AR hybrid encryption. Finally, we embed the AR hybrid encryption into the multi-relay PNC communication system. At relay nodes of the ARPNC system, we focus on solving the problem of signal mapping. In the meantime, to reduce the performance loss caused by the increase of relay nodes, we exploit Low-Density Parity-Check (LDPC) code to enhance the decoding accuracy. The experimental results and security analysis show that the proposed scheme can boost the system throughput and transmission dependability and stronger the security of the communication system.
Authored by Yanru Yang, Meng Tang, Haihua Li, Guofeng Zeng, Jianhua Chen, Yongtao Yu
Network Coding - This paper introduces a method to improve the transmission model of BigNum network coding. The main contents include the research status of network coding, the principle of BigNum network coding, the security problems existing in the existing technology, the new coding matrix proposed for the problem, the beneficial effect of the new matrix and comparison. In this paper, to improve the security of BigNum network coding, we propose two new coding matrix forms: random number matrix and Fibonacci generation matrix. We also give a proof of the invertibility of Fibonacci generate matrix.
Authored by Zengqiang Tang, Yuyang Zhang, Wenxuan Qiao, Ping Dong
Network Coding - Network coding is getting wider and wider applications. Among which, many studies aim to leverage network coding to improve network security. However, a clear security classification and hierarchy is still missing so far. By classifying and articulating existing schemes, this paper proposed a security hierarchy of network coding system for the community. Four security grades: basic security, weak security, perfect security, and strong security, are tiered with different security strength. The tenet and implementation of them are expounded. The hierarchy helps delineate, classify, and differentiate secure network coding.
Authored by Na Qin, Yantao Liu
Unmanned Aerial Vehicles (UAVs) are drawing enormous attention in both commercial and military applications to facilitate dynamic wireless communications and deliver seamless connectivity due to their flexible deployment, inherent line-of-sight (LOS) air-to-ground (A2G) channels, and high mobility. These advantages, however, render UAV-enabled wireless communication systems susceptible to eavesdropping attempts. Hence, there is a strong need to protect the wireless channel through which most of the UAV-enabled applications share data with each other. There exist various error correction techniques such as Low Density Parity Check (LDPC), polar codes that provide safe and reliable data transmission by exploiting the physical layer but require high transmission power. Also, the security gap achieved by these error-correction techniques must be reduced to improve the security level. In this paper, we present deep learning (DL) enabled punctured LDPC codes to provide secure and reliable transmission of data for UAVs through the Additive White Gaussian Noise (AWGN) channel irrespective of the computational power and channel state information (CSI) of the Eavesdropper. Numerical result analysis shows that the proposed scheme reduces the Bit Error Rate (BER) at Bob effectively as compared to Eve and the Signal to Noise Ratio (SNR) per bit value of 3.5 dB is achieved at the maximum threshold value of BER. Also, the security gap is reduced by 47.22 % as compared to conventional LDPC codes.
Authored by Himanshu Sharma, Neeraj Kumar, Raj Tekchandani, Nazeeruddin Mohammad
For some countries around the world, meeting demand is a serious concern. Power supply market is increasingly increasing, posing a big challenge for various countries throughout the world. The increasing expansion in the market for power needs upgrading system dependability to increase the smart grid's resilience. This smart electric grid has a sensor that analyses grid power availability and sends regular updates to the organisation. The internet is currently being utilized to monitor processes and place orders for running variables from faraway places. A large number of scanners have been used to activate electrical equipment for domestic robotics for a long period in the last several days. Conversely, if it is not correctly implemented, it will have a negative impact on cost-effectiveness as well as productivity. For something like a long time, home automation has relied on a large number of sensor nodes to control electrical equipment. Since there are so many detectors, this isn't cost-effective. In this article, develop and accept a wireless communication component and a management system suitable for managing independent efficient network units from voltage rises and voltage control technologies in simultaneous analyzing system reliability in this study. This research paper has considered secondary method to collect relevant and in-depth data related to the wireless sensor network and its usage in smart grid monitoring.
Authored by Ch. Kumar, Ganesh Dixit, Rajesh Singh, Bharath Narukullapati, Kalyan Chakravarthi, Durgaprasad Gangodkar
With the continuous development of the Internet, artificial intelligence, 5G and other technologies, various issues have started to receive attention, among which the network security issue is now one of the key research directions for relevant research scholars at home and abroad. This paper researches on the basis of traditional Internet technology to establish a security identification system on top of the network physical layer of the Internet, which can effectively identify some security problems on top of the network infrastructure equipment and solve the identified security problems on the physical layer. This experiment is to develop a security identification system, research and development in the network physical level of the Internet, compared with the traditional development of the relevant security identification system in the network layer, the development in the physical layer, can be based on the physical origin of the protection, from the root to solve part of the network security problems, can effectively carry out the identification and solution of network security problems. The experimental results show that the security identification system can identify some basic network security problems very effectively, and the system is developed based on the physical layer of the Internet network, and the protection is carried out from the physical device, and the retransmission symbol error rates of CQ-PNC algorithm and ML algorithm in the experiment are 110 and 102, respectively. The latter has a lower error rate and better protection.
Authored by Yunge Huang
With the development of social networks, traditional covert communication requires more consideration of lossy processes of Social Network Platforms (SNPs), which is called robust steganography. Since JPEG compression is a universal processing of SNPs, a method using repeated JPEG compression to fit transport channel matching is recently proposed and shows strong compression-resist performance. However, the repeated JPEG compression will inevitably introduce other artifacts into the stego image. Using only traditional steganalysis methods does not work well towards such robust steganography under low payload. In this paper, we propose a simple and effective method to detect the mentioned steganography by chasing both steganographic perturbations as well as continuous compression artifacts. We introduce compression-forensic features as a complement to steganalysis features, and then use the ensemble classifier for detection. Experiments demonstrate that this method owns a similar and better performance with respect to both traditional and neural-network-based steganalysis.
Authored by Jinliu Feng, Yaofei Wang, Kejiang Chen, Weiming Zhang, Nenghai Yu
Nowadays, online cloud storage networks can be accessed by third parties. Businesses that host large data centers buy or rent storage space from individuals who need to store their data. According to customer needs, data hub operators visualise the data and expose the cloud storage for storing data. Tangibly, the resources may wander around numerous servers. Data resilience is a prior need for all storage methods. For routines in a distributed data center, distributed removable code is appropriate. A safe cloud cache solution, AES-UCODR, is proposed to decrease I/O overheads for multi-block updates in proxy re-encryption systems. Its competence is evaluated using the real-world finance sector.
Authored by Devaki K, Leena L
Mobile small cells that are enabled with Network Coding (NC) are seen as a potentially useful technique for Fifth Generation (5G) networks, since they can cover an entire city and can be put up on demand anywhere, any time, and on any device. Despite numerous advantages, significant security issues arise as a result of the fact that the NC-enabled mobile small cells are vulnerable to attacks. Intrusions are a severe security threat that exploits the inherent vulnerabilities of NC. In order to make NC-enabled mobile small cells to realize their full potential, it is essential to implement intrusion detection systems. When compared to homomorphic signature or hashing systems, homomorphic message authentication codes (MACs) provide safe network coding techniques with relatively smaller overheads. A number of research studies have been conducted with the goal of developing mobile small cells that are enabled with secure network coding and coming up with integrity protocols that are appropriate for such crowded situations. However, the intermediate nodes alter packets while they are in transit and hence the integrity of the data cannot be confirmed by using MACs and checksums. This research study has analyzed numerous intrusion detection models for NC enabled small cells. This research helps the scholars to get a brief idea about various intrusion detection models.
Authored by Kiran Chanumolu, Nandhakumar Ramachandran
We use mobile apps on a daily basis and there is an app for everything. We trust these applications with our most personal data. It is therefore important that these apps are as secure and well usable as possible. So far most studies on the maintenance and security of mobile applications have been done on Android applications. We do, however, not know how well these results translate to iOS.This research project aims to close this gap by analysing iOS applications with regards to maintainability and security. Regarding maintainability, we analyse code smells in iOS applications, the evolution of code smells in iOS applications and compare code smell distributions in iOS and Android applications. Regarding security, we analyse the evolution of the third-party library dependency network for the iOS ecosystem. Additionally, we analyse how publicly reported vulnerabilities spread in the library dependency network.Regarding maintainability, we found that the distributions of code smells in iOS and Android applications differ. Code smells in iOS applications tend to correspond to smaller classes, such as Lazy Class. Regarding security, we found that the library dependency network of the iOS ecosystem is not growing as fast as in some other ecosystems. There are less dependencies on average than for example in the npm ecosystem and, therefore, vulnerabilities do not spread as far.
Authored by Kristiina Rahkema, Dietmar Pfahl
When storing face biometric samples in accordance with ISO/IEC 19794 as JPEG2000 encoded images, it is necessary to encrypt them for the sake of users’ privacy. Literature suggests selective encryption of JPEG2000 images as fast and efficient method for encryption, the trade-off is that some information is left in plaintext. This could be used by an attacker, in case the encrypted biometric samples are leaked. In this work, we will attempt to utilize a convolutional neural network to perform cryptanalysis of the encryption scheme. That is, we want to assess if there is any information left in plaintext in the selectively encrypted face images which can be used to identify the person. The chosen approach is to train CNNs for biometric face recognition not only with plaintext face samples but additionally conduct a refinement training with partially encrypted data. If this system can successfully utilize encrypted face samples for biometric matching, we can show that the information left in encrypted biometric face samples is information actually usable for biometric recognition.The method works and we can show that a supposedly secure biometric sample still contains identifying information on average over the whole database.
Authored by Heinz Hofbauer, Yoanna Martínez-Díaz, Luis Luevano, Heydi Méndez-Vázquez, Andreas Uhl
Blind identification of channel codes is crucial in intelligent communication and non-cooperative signal processing, and it plays a significant role in wireless physical layer security, information interception, and information confrontation. Previous researches show a high computation complexity by manual feature extractions, in addition, problems of indisposed accuracy and poor robustness are to be resolved in a low signal-to-noise ratio (SNR). For solving these difficulties, based on deep residual shrinkage network (DRSN), this paper proposes a novel recognizer by deep learning technologies to blindly distinguish the type and the parameter of channel codes without any prior knowledge or channel state, furthermore, feature extractions by the neural network from codewords can avoid intricate calculations. We evaluated the performance of this recognizer in AWGN, single-path fading, and multi-path fading channels, the results of the experiments showed that the method we proposed worked well. It could achieve over 85 % of recognition accuracy for channel codes in AWGN channels when SNR is not lower than 4dB, and provide an improvement of more than 5% over the previous research in recognition accuracy, which proves the validation of the proposed method.
Authored by Haifeng Peng, Chunjie Cao, Yang Sun, Haoran Li, Xiuhua Wen
We present a novel chaotic laser coding technology of alternate variable secret-key (AVSK) for optics secure communication using alternate variable orbits (AVOs) method. We define the principle of chaotic AVSK encoding and decoding, and introduce a chaotic AVSK communication platform and its coding scheme. And then the chaotic AVSK coding technology be successfully achieved in encrypted optics communications while the presented AVO function, as AVSK, is adjusting real-time chaotic phase space trajectory, where the AVO function and AVSK according to our needs can be immediately variable and adjustable. The coding system characterizes AVSK of emitters. And another combined AVSK coding be discussed. So the system's security enhances obviously because it increases greatly the difficulty for intruders to decipher the information from the carrier. AVSK scheme has certain reference value for the research of chaotic laser secure communication and laser network synchronization.
Authored by Yan Senlin
Vulnerability discovery is an important field of computer security research and development today. Because most of the current vulnerability discovery methods require large-scale manual auditing, and the code parsing process is cumbersome and time-consuming, the vulnerability discovery effect is reduced. Therefore, for the uncertainty of vulnerability discovery itself, it is the most basic tool design principle that auxiliary security analysts cannot completely replace them. The purpose of this paper is to study the source code vulnerability discovery method based on graph neural network. This paper analyzes the three processes of data preparation, source code vulnerability mining and security assurance of the source code vulnerability mining method, and also analyzes the suspiciousness and particularity of the experimental results. The empirical analysis results show that the types of traditional source code vulnerability mining methods become more concise and convenient after using graph neural network technology, and we conducted a survey and found that more than 82% of people felt that the design source code vulnerability mining method used When it comes to graph neural networks, it is found that the design efficiency has become higher.
Authored by Zhenghong Jiang
In covert communication systems, covert messages can be transmitted without being noticed by the monitors or adversaries. Therefore, the covert communication technology has emerged as a novel method for network authentication, copyright protection, and the evidence of cybercrimes. However, how to design the covert communication in the physical layer of wireless networks and how to improve the channel capacity for the covert communication systems are very challenging. In this paper, we propose a wireless covert communication system, where data streams from the antennas of the transmitter are coded according to a code book to transmit covert and public messages. We adopt a modulation scheme, named covert quadrature amplitude modulation (QAM), to modulate the messages, where the constellation of covert information bits deviates from its normal coordinates. Moreover, the covert receiver can detect the covert information bits according to the constellation departure. Simulation results show that proposed covert communication system can significantly improve the covert data rate and reduce the covert bit error rate, in comparison with the traditional covert communication systems.
Authored by Wei Li, Jie Liao, Yuwen Qian, Xiangwei Zhou, Yan Lin