The complex landscape of multi-cloud settings is the result of the fast growth of cloud computing and the ever-changing needs of contemporary organizations. Strong cyber defenses are of fundamental importance in this setting. In this study, we investigate the use of AI in hybrid cloud settings for the purpose of multi-cloud security management. To help businesses improve their productivity and resilience, we provide a mathematical model for optimal resource allocation. Our methodology streamlines dynamic threat assessments, making it easier for security teams to efficiently priorities vulnerabilities. The advent of a new age of real-time threat response is heralded by the incorporation of AI-driven security tactics. The technique we use has real-world implications that may help businesses stay ahead of constantly changing threats. In the future, scientists will focus on autonomous security systems, interoperability, ethics, interoperability, and cutting-edge AI models that have been validated in the real world. This study provides a detailed road map for businesses to follow as they navigate the complex cybersecurity landscape of multi-cloud settings, therefore promoting resilience and agility in this era of digital transformation.
Authored by Srimathi. J, K. Kanagasabapathi, Kirti Mahajan, Shahanawaj Ahamad, E. Soumya, Shivangi Barthwal
The complex landscape of multi-cloud settings is the result of the fast growth of cloud computing and the ever-changing needs of contemporary organizations. Strong cyber defenses are of fundamental importance in this setting. In this study, we investigate the use of AI in hybrid cloud settings for the purpose of multi-cloud security management. To help businesses improve their productivity and resilience, we provide a mathematical model for optimal resource allocation. Our methodology streamlines dynamic threat assessments, making it easier for security teams to efficiently priorities vulnerabilities. The advent of a new age of real-time threat response is heralded by the incorporation of AI-driven security tactics. The technique we use has real-world implications that may help businesses stay ahead of constantly changing threats. In the future, scientists will focus on autonomous security systems, interoperability, ethics, interoperability, and cutting-edge AI models that have been validated in the real world. This study provides a detailed road map for businesses to follow as they navigate the complex cybersecurity landscape of multi-cloud settings, therefore promoting resilience and agility in this era of digital transformation.
Authored by Srimathi. J, K. Kanagasabapathi, Kirti Mahajan, Shahanawaj Ahamad, E. Soumya, Shivangi Barthwal
Quantum secret sharing (QSS) is a cryptography technique relying on the transmission and manipulation of quantum states to distribute secret information across multiple participants securely. However, quantum systems are susceptible to various types of noise that can compromise their security and reliability. Therefore, it is essential to analyze the influence of noise on QSS to ensure their effectiveness and practicality in real-world quantum communication. This paper studies the impact of various noisy environments on multi-dimensional QSS. Using quantum fidelity, we examine the influence of four noise models: d-phase-flip(dpf), dit-flip(df), amplitude damping(ad), and depolarizing(d). It has been discovered that the fidelity declines with an increase in the noise parameter. Furthermore, the results demonstrate that the efficiency of the QSS protocol differs significantly across distinct noise models.
Authored by Deepa Rathi, Sanjeev Kumar, Reena Grover
The complex landscape of multi-cloud settings is the result of the fast growth of cloud computing and the ever-changing needs of contemporary organizations. Strong cyber defenses are of fundamental importance in this setting. In this study, we investigate the use of AI in hybrid cloud settings for the purpose of multi-cloud security management. To help businesses improve their productivity and resilience, we provide a mathematical model for optimal resource allocation. Our methodology streamlines dynamic threat assessments, making it easier for security teams to efficiently priorities vulnerabilities. The advent of a new age of real-time threat response is heralded by the incorporation of AI-driven security tactics. The technique we use has real-world implications that may help businesses stay ahead of constantly changing threats. In the future, scientists will focus on autonomous security systems, interoperability, ethics, interoperability, and cutting-edge AI models that have been validated in the real world. This study provides a detailed road map for businesses to follow as they navigate the complex cybersecurity landscape of multi-cloud settings, therefore promoting resilience and agility in this era of digital transformation.
Authored by Srimathi. J, K. Kanagasabapathi, Kirti Mahajan, Shahanawaj Ahamad, E. Soumya, Shivangi Barthwal
Cloud computing has turned into an important technology of our time. It has drawn attention due to its, availability, dynamicity, elasticity and pay as per use pricing mechanism this made multiple organizations to shift onto the cloud platform. It leverages the cloud to reduce administrative and backup overhead. Cloud computing offers a lot of versatility. Quantum technology, on the other hand, advances at a breakneck pace. Experts anticipate a positive outcome and predict that within the next decade, powerful quantum computers will be available. This has and will have a substantial impact on various sciences streams such as cryptography, medical research, and much more. Sourcing applications for business and informational data to the cloud, presents privacy and security concerns, which have become crucial in cloud installation and services adoption. To address the current security weaknesses, researchers and impacted organizations have offered several security techniques in the literature. The literature also gives a thorough examination of cloud computing security and privacy concerns.
Authored by Rajvir Shah
This paper offers a thorough investigation into quantum cryptography, a security paradigm based on the principles of quantum mechanics that provides exceptional guarantees for communication and information protection. The study covers the fundamental principles of quantum cryptography, mathematical modelling, practical applications, and future prospects. It discusses the representation of quantum states, quantum operations, and quantum measurements, emphasising their significance in mathematical modelling. The paper showcases the real-world applications of quantum cryptography in secure communication networks, financial systems, government and defence sectors, and data centres. Furthermore, it identifies emerging domains such as IoT, 5G networks, blockchain technology, and cloud computing as promising areas for implementing quantum cryptographic solutions. The paper also presents avenues for further research, including post-quantum cryptography, quantum cryptanalysis, multi-party quantum communication, and device-independent quantum cryptography. Lastly, it underscores the importance of developing robust infrastructure, establishing standards, and ensuring interoperability to facilitate widespread adoption of quantum cryptography. This comprehensive exploration of quantum cryptography contributes to the advancement of secure communication, information protection, and the future of information security in the era of quantum technology.
Authored by Atharva Takalkar, Bahubali Shiragapur
Hybrid authenticated key exchange combines cryptography key material from different sources (classical, quantum and post-quantum cryptography) to build protocols that are resilient to catastrophic failures, technology advances and future cryptanalytic attacks. In this work, we propose and implement a triple-hybrid version of the transport layer security network protocol TLS 1.3, combining classical and post-quantum cryptography, and quantum key distribution. We evaluate the performance of this triple-hybrid TLS in an experimental network scenario and our analysis shows that the quantum-resistant feature comes at an increased communication cost of approximately 68 \% over the total time of the composite handshakes. In exchange, our solution is an enhancement to the TLS 1.3 protocol by adding quantum-resistant cryptography schemes.
Authored by Carlos Garcia, Abraham Aguilera, Juan Olmos, Idelfonso Monroy, Simon Rommel
In a traditional voting system, voters have to reach the voting system to cast their votes. It is difficult for the elderly and for those living in remote localities to cast a vote. In the era of digital advancements, remote electronic voting has emerged as an efficient means of engaging citizens in decision-making processes. However, ensuring fairness and mitigating fraud in elections remain significant challenges. This research paper proposes a novel approach called Quantum Secret Sharing (QSS) combined with the quantum binary voting protocol, leveraging the capabilities of the IBM Quantum Experience platform. By incorporating established security features and introducing new criteria, this protocol aims to surpass the limitations of classical voting systems. The research involves the creation of communication circuits using IBM Quantum Experience and subsequent analysis through quantum state tomography. By integrating the principles of QSS and the quantum binary voting protocol, the proposed approach addresses the limitations of classical voting systems. The protocol satisfies the standards of traditional voting systems while introducing new criteria to overcome their shortcomings. Through the utilization of IBM Quantum Experience, secure communication circuits are established, and the outcomes are analyzed using quantum state tomography, ensuring the fairness and accuracy of the voting process. It integrates quantum cryptography, quantum communication, and classical cryptography techniques to create a robust and tamper-resistant voting protocol. By employing quantum superposition, the protocol enables voters to cast their votes in multiple states simultaneously, making it extremely difficult for a malicious person to intercept or alter individual votes. Furthermore, quantum entanglement ensures that any unauthorized attempt to measure or manipulate the quantum states would result in detectable changes, enhancing the overall security of the voting process.
Authored by Pragati Bhale, Digambar Padulkar, Jibi Abraham
The globe is observing the emergence of the Internet of Things more prominently recognized as IoT. In this day and age, there exist numerous technological apparatuses that possess the capability to be interconnected with the internet and can amass, convey, and receive information concerning the users. This technology endeavors to simplify existence, however, when the users information is the central concern for IoT operation, it is necessary to adhere to security measures to guarantee privacy and prevent the exploitation of said information. The customary cryptographic algorithms, such as RSA, AES, and DES, may perform adequately with older technologies such as conventional computers or laptops. Nevertheless, contemporary technologies are heading towards quantum computing, and this latter form possesses a processing capability that can effortlessly jeopardize the aforementioned cryptographic algorithms. Therefore, there arises an imperative necessity for a novel and resilient cryptographic algorithm. To put it differently, there is a requirement to devise a fresh algorithm, impervious to quantum computing, that can shield the information from assaults perpetrated utilizing quantum computing. IoT is one of the domains that must ensure the security of the information against malevolent activities. Besides the conventional cryptography that enciphers information into bits, quantum encryption utilizes qubits, specifically photons and photon polarization, to encode data.
Authored by Modafar Ati
The security of our data is the prime priority as it is said “Data is the new Oil”. Nowadays, most of our communications are either recorded or forged. There are algorithms used under classical encryption, such as Rivest-Shamir-Adleman (RSA), digital signature, elliptic-curve cryptography (ECC), and more, to protect our communication and data. However, these algorithms are breakable with the help of Quantum Cryptography. In addition, this technology provides the most secure form of communication between entities under the fundamental law of Physics. Here, we are abiding to discuss the term “Quantum Cryptography.” The aim of this paper is to explore the knowledge related to the Quantum Cryptography, Quantum Key Distribution; and their elements, implementation, and the latest research. Moreover, exploration of the loopholes and the security of Internet of Things (IoT) infrastructure and current used classical cryptographic algorithms are described in the paper.
Authored by Harshita Jasoliya, Kaushal Shah
Recent advances in quantum computing and quantum information theory represent a severe threat to the current state of the art of data protection. In this context, new quantum-safe techniques have emerged in recent decades, which fall into post-quantum and unconditionally secure cryptographic schemes. The firsts rely on computational problems supposed to be hard also for quantum computers. In contrast, the seconds do not depend on the difficulty of a computational problem and are therefore immune to quantum power. In particular, unconditionally secure techniques include Quantum Key Distribution (QKD) protocols for transmitting secret keys thanks to the quantum properties of light. In this work, we discuss QKD networks and post-quantum algorithms, considering their opportunities and limitations and showing that reconciliation between these two directions of cryptography is feasible and necessary for the quantum era.This work is part of the activities of the PON project “Development of quantum systems and technologies for IT security in communication networks” (QUANCOM) which aims to the realization of a metropolitan quantum communication network through the collaboration between universities, research centers and companies operating in the communication market area.
Authored by Eufemia Lella, Alberto Gatto, Andrea Pazienza, Diego Romano, Pietro Noviello, Felice Vitulano, Giovanni Schmid
Cryptography and steganography is a method to secure private data. Those methods can also be combined for a more robust data security method. In this paper, we proposed a combination of cryptography and steganography methods that exploit some properties of Deoxyribonucleic Acid (DNA) for securing private data. The proposed work aims to enhance a POST-quantum DNA cryptography method by combining it with the steganography method. There are two parts to the proposed method; the first one is to encrypt private messages using a Kyber-DNA cryptography method. The second one is to embed encrypted private messages into a DNA sequence. The proposed method was then compared to another similar method RSA-DNA, El Gamal-DNA, and ECC-DNA. The proposed method is also compared with a similar POST-quantum method, that is NTRU-DNA. All those methods are compared in embedding speed test and extracting speed test. From those tests, it can be concluded that the proposed method has performance slightly lower than El Gamal-DNA and ECC-DNA but faster than RSA-DNA and NTRU-DNA
Authored by Bambang Harjito, Faisal Rahutomo, U. Satriyo, Heri Prasetyo
Information exchange occurs all the time in today’s internet era. Some of the data are public, and some are private. Asymmetric cryptography plays a critical role in securing private data transfer. However, technological advances caused private data at risk due to the presence of quantum computers. Therefore, we need a new method for securing private data. This paper proposes combining DNA cryptography methods based on the NTRU cryptosystem to enhance security data confidentiality. This method is compared with conventional public key cryptography methods. The comparison shows that the proposed method has a slow encryption and decryption time compared to other methods except for RSA. However, the key generation time of the proposed method is much faster than other methods tested except for ECC. The proposed method is superior in key generation time and considerably different from other tested methods. Meanwhile, the encryption and decryption time is slower than other methods besides RSA. The test results can get different results based on the programming language used.
Authored by U. Satriyo, Faisal Rahutomo, Bambang Harjito, Heri Prasetyo
Counterfeited products are a significant problem in both developed and developing countries and has become more critical as an aftermath of COVID-19, exclusively for drugs and medical equipment’s. In this paper, an innovative approach is proposed to resist counterfeiting which is based on the principles of Synthetic DNA. The proposed encryption approach has employed the distinctive features of synthetic DNA in amalgamation with DNA encryption to provide information security and functions as an anticounterfeiting method that ensures usability. The scheme’s security analysis and proof of concept are detailed. Scyther is used to carry out the formal analysis of the scheme, and all of the modeled assertions are verified without any attacks.
Authored by C.S. Sreeja, Mohammed Misbahuddin
Visible Light Security 2022 - In the near future, the high data rate challenge would not be possible by using the radio frequency (RF) only. As the user will increase, the network traffic will increase proportionally. Visible light communication (VLC) is a good solution to support huge number of indoor users. VLC has high data rate over RF communication. The way internet users are increasing, we have to think over VLC technology. Not only the data rate is a concern but also its security, cost, and reliability have to be considered for a good communication network. Quantum technology makes a great impact on communication and computing in both areas. Quantum communication technology has the ability to support better channel capacity, higher security, and lower latency. This paper combines the quantum technology over the existing VLC and compares the performance between quantum visible light communication performance (QVLC) over the existing VLC system. Research findings clearly show that the performance of QVLC is better than the existing VLC system.
Authored by Syed Hasan, Mostafa Chowdhury, Md. Saiam
Quantum Computing Security 2022 - Emerging quantum algorithms that process data require that classical input data be represented as a quantum state. These data-processing algorithms often follow the gate model of quantum computing—which requires qubits to be initialized to a basis state, typically \textbar0 —and thus often employ state generation circuits to transform the initialized basis state to a data-representation state. There are many ways to encode classical data in a qubit, and the oft-applied approach of basis encoding does not allow optimization to the extent that other variants do. In this work, we thus consider automatic synthesis of addressable, quantum read-only memory (QROM) circuits, which act as data-encoding state-generation circuits. We investigate three data encoding approaches, one of which we introduce to provide improved dynamic range and precision. We present experimental results that compare these encoding methods for QROM synthesis to better understand the implications of and applications for each.
Authored by Aviraj Sinha, Elena Henderson, Jessie Henderson, Mitchell Thornton
Quantum Computing Security 2022 - As the development of quantum computing hardware is on the rise, its potential application to various research areas has been investigated, including to machine learning. Recently, there have been several initiatives to expand the work to quantum federated learning (QFL). However, challenges arise due to the fact that quantum computation poses different characteristics from classical computation, giving an even more challenge for a federated setting. In this paper, we present a highlevel overview of the current state of research in QFL. Furthermore, we also describe in brief about quantum computation and discuss its present limitations in relation to QFL development. Additionally, possible approaches to deploy QFL are explored. Lastly, remarks and challenges of QFL are also presented.
Authored by Harashta Larasati, Muhammad Firdaus, Howon Kim
Quantum Computing Security 2022 - Quantum kernels map data to higher dimensions for classification and have been shown to have an advantage over classical methods. In our work, we generalize recent results in binary quantum kernels to multivalued logic by using higher dimensional entanglement to create a qudit memory and show that the use of qudits offers advantages in terms of quantum memory representation as well as enhanced resolution in the outcome of the kernel calculation. Our method is not only capable of finding the kernel inner product of higher dimensional data but can also efficiently and concurrently compute multiple instances of quantum kernel computations in linear time. We discuss how this method increases efficiency and resolution for various distance-based classifiers that require large datasets when accomplished with higher-dimensioned quantum data encodings. We provide experimental results of our qudit kernel calculations with different data encoding methods through the use of a higher-dimensioned quantum computation simulator.
Authored by Aviraj Sinha, Mitchell Thornton
Quantum Computing Security 2022 - Recent advances in quantum computing have highlighted the vulnerabilities in contemporary RSA encryption. Shor’s approach for factoring numbers is becoming more tractable as quantum computing advances. This jeopardizes the security of any cryptographic system that is based on the complexity of factorisation. Many other crypto-systems based on theories like Elliptic Curve Cryptography are also vulnerable. To keep a cryptographic system safe against a quantum adversary, we must develop approaches based on a hard mathematical problem that is not vulnerable to quantum computer attacks, and we must develop Post Quantum Cryptography (PQC). One potential option is the use of lattices in a system called ring Learning with Errors (rLWE). Several techniques for postquantum encryption have been submitted to NIST. This paper studies the different speeds of different lattice-based protocols.
Authored by Mohamed Garrach, Chetan Waghela, Mahima Mathews, L Sreekuttan
Quantum Computing Security 2022 - Cloud computing has turned into an important technology of our time. It has drawn attention due to its, availability, dynamicity, elasticity and pay as per use pricing mechanism this made multiple organizations to shift onto the cloud platform. It leverages the cloud to reduce administrative and backup overhead. Cloud computing offers a lot of versatility. Quantum technology, on the other hand, advances at a breakneck pace. Experts anticipate a positive outcome and predict that within the next decade, powerful quantum computers will be available. This has and will have a substantial impact on various sciences streams such as cryptography, medical research, and much more. Sourcing applications for business and informational data to the cloud, presents privacy and security concerns, which have become crucial in cloud installation and services adoption. To address the current security weaknesses, researchers and impacted organizations have offered several security techniques in the literature. The literature also gives a thorough examination of cloud computing security and privacy concerns.
Authored by Rajvir Shah
Quantum Computing Security 2022 - With the continuous development of Internet of Things (IoT) technology, information and communication technology is also progressing rapidly, among which quantum computer secrecy communication scheme is a new type of cryptographic lock system. It uses both traditional security software encryption algorithms and classical cryptographic systems to achieve a series of operations such as secret storage, transmission and restoration of data. This paper introduces the principle of quantum key distribution and its applications from the physical level; then analyses its security problems and the corresponding research status and proposes improvement methods and measures; finally, with the goal of "bit-based computing information security", a new type of secure communication scheme is designed.
Authored by Lian Tong, Taizhi Lv, Pingping Xia
Quantum Computing Security 2022 - Quantum computing is a swiftly blooming technology that straps up the process of quantum mechanics to solve problems too complex for conventional computers. Quantum Cryptography applies algorithms to encrypt messages that it is never read by anyone outside of the unauthorized recipient. Using Quantum mechanics, for secure communication, we have to follow either a superposition or entanglement algorithm. When compared to superposition, entanglement algorithms are providing more security. Why because it is difficult for intruders to identify how the qubits maintain the relationship. In the existing system, Quantum Key Distribution for short distances has already implemented its even commercially available using entanglement algorithm (Artur Ekert E91 Protocol). In the proposed system, quantum communication over very long distances. In this paper, using Quantum entanglement; the keys are exchanged securely and identify eavesdropping in the communication channel.
Authored by Vani Geddada, P. Lakshmi
Quantum Computing Security 2022 - We propose a new paradigm for security of quantum protocols. Instead of making one, powerful, difficult to check assumption about the system, we make a few, which are easy to verify or otherwise justify. This enables us to combine very high security levels with relatively low hardware complexity. We present a self-testing quantum random number generator that demonstrates the usefulness of our paradigm. We describe this device, prove its security against active attacks, backdoors and malfunctions and analyze its efficiency.
Authored by Marcin Pawlowski, Marcin Jarzyna, Karol Lukanowski, Michal Jachura, Konrad Banaszek
Quantum Computing Security 2022 - At present, the mature application of computer network and digitized information are increasingly popular, people s ability to crack encryption algorithms, and the traditional key system cannot guarantee the absolute security of the information system. This paper, on the data encryption of big data, data integrity and data disaster backup technology and quantum communication security of quantum key distribution, direct communication and quantum secret security sharing technology, proposed a quantum security computing route model based on the management condition of data authentication center. Based on the route model, this paper studies the image encryption technology of the linear model of quantum security computing from different technical perspectives to ensure the security of image information.
Authored by Lian Tong, Pingping Xia, Taizhi Lv
Quantum Computing Security 2022 - Geospatial fog computing system offers various benefits as a platform for geospatial computing services closer to the end users, including very low latency, good mobility, precise position awareness, and widespread distribution. In recent years, it has grown quickly. Fog nodes’ security is susceptible to a number of assaults, including denial of service and resource abuse, because to their widespread distribution, complex network environments, and restricted resource availability. This paper proposes a Quantum Key Distribution (QKD)-based geospatial quantum fog computing environment that offers a symmetric secret key negotiation protocol that can preserve informationtheoretic security. In QKD, after being negotiated between any two fog nodes, the secret keys can be given to several users in various locations to maintain forward secrecy and long-term protection. The new geospatial quantum fog computing environment proposed in this work is able to successfully withstand a variety of fog computing assaults and enhances information security.
Authored by Pratyusa Mukherjee, Rabindra Barik