Internet technology has made surveillance widespread and access to resources at greater ease than ever before. This implied boon has countless advantages. It however makes protecting privacy more challenging for the greater masses, and for the few hacktivists, supplies anonymity. The ever-increasing frequency and scale of cyber-attacks has not only crippled private organizations but has also left Law Enforcement Agencies(LEA's) in a fix: as data depicts a surge in cases relating to cyber-bullying, ransomware attacks; and the force not having adequate manpower to tackle such cases on a more microscopic level. The need is for a tool, an automated assistant which will help the security officers cut down precious time needed in the very first phase of information gathering: reconnaissance. Confronting the surface web along with the deep and dark web is not only a tedious job but which requires documenting the digital footprint of the perpetrator and identifying any Indicators of Compromise(IOC's). TORSION which automates web reconnaissance using the Open Source Intelligence paradigm, extracts the metadata from popular indexed social sites and un-indexed dark web onion sites, provided it has some relating Intel on the target. TORSION's workflow allows account matching from various top indexed sites, generating a dossier on the target, and exporting the collected metadata to a PDF file which can later be referenced.
Authored by Hritesh Sonawane, Sanika Deshmukh, Vinay Joy, Dhanashree Hadsul
Onion Routing is an encrypted communication system developed by the U.S. Naval Laboratory that uses existing Internet equipment to communicate anonymously. Miscreants use this means to conduct illegal transactions in the dark web, posing a security risk to citizens and the country. For this means of anonymous communication, website fingerprinting methods have been used in existing studies. These methods often have high overhead and need to run on devices with high performance, which makes the method inflexible. In this paper, we propose a lightweight method to address the high overhead problem that deep learning website fingerprinting methods generally have, so that the method can be applied on common devices while also ensuring accuracy to a certain extent. The proposed method refers to the structure of Inception net, divides the original larger convolutional kernels into smaller ones, and uses group convolution to reduce the website fingerprinting and computation to a certain extent without causing too much negative impact on the accuracy. The method was experimented on the data set collected by Rimmer et al. to ensure the effectiveness.
Authored by Dingyang Liang, Jianing Sun, Yizhi Zhang, Jun Yan
Deep web refers to sites that cannot be found by search engines and makes up the 96% of the digital world. The dark web is the part of the deep web that can only be accessed through specialised tools and anonymity networks. To avoid monitoring and control, communities that seek for anonymization are moving to the dark web. In this work, we scrape five dark web forums and construct five graphs to model user connections. These networks are then studied and compared using data mining techniques and social network analysis tools; for each community we identify the key actors, we study the social connections and interactions, we observe the small world effect, and we highlight the type of discussions among the users. Our results indicate that only a small subset of users are influential, while the rapid dissemination of information and resources between users may affect behaviours and formulate ideas for future members.
Authored by Sotirios Nikoletos, Paraskevi Raftopoulou
The amount of information that is shared regularly has increased as a direct result of the rapid development of network administrators, Web of Things-related devices, and online users. Cybercriminals constantly work to gain access to the data that is stored and transferred online in order to accomplish their objectives, whether those objectives are to sell the data on the dark web or to commit another type of crime. After conducting a thorough writing analysis of the causes and problems that arise with wireless networks’ security and privacy, it was discovered that there are a number of factors that can make the networks unpredictable, particularly those that revolve around cybercriminals’ evolving skills and the lack of significant bodies’ efforts to combat them. It was observed. Wireless networks have a built-in security flaw that renders them more defenceless against attack than their wired counterparts. Additionally, problems arise in networks with hub mobility and dynamic network geography. Additionally, inconsistent availability poses unanticipated problems, whether it is accomplished through mobility or by sporadic hub slumber. In addition, it is difficult, if not impossible, to implement recently developed security measures due to the limited resources of individual hubs. Large-scale problems that arise in relation to wireless networks and flexible processing are examined by the Wireless Correspondence Network Security and Privacy research project. A few aspects of security that are taken into consideration include confirmation, access control and approval, non-disavowal, privacy and secrecy, respectability, and inspection. Any good or service should be able to protect a client’s personal information. an approach that emphasises quality, implements strategy, and uses a poll as a research tool for IT and public sector employees. This strategy reflects a higher level of precision in IT faculties.
Authored by Hoshiyar Singh, K Balamurgan
A new privacy Laplace common recognition algorithm is designed to protect users’ privacy data in this paper. This algorithm disturbs state transitions and information generation functions using exponentially decaying Laplace noise to avoid attacks. The mean square consistency and privacy protection performance are further studied. Finally, the theoretical results obtained are verified by performing numerical simulations.
Authored by Yue Zhang, Xiaoya Nan, Jialing Zhou, Shuai Wang
The healthcare industry is confronted with a slew of significant challenges, including stringent regulations, privacy concerns, and rapidly rising costs. Many leaders and healthcare professionals are looking to new technology and informatics to expand more intelligent forms of healthcare delivery. Numerous technologies have advanced during the last few decades. Over the past few decades, pharmacy has changed and grown, concentrating less on drugs and more on patients. Pharmaceutical services improve healthcare's affordability and security. The primary invention was a cyber-infrastructure made up of smart gadgets that are connected to and communicate with one another. These cyber infrastructures have a number of problems, including privacy, trust, and security. These gadgets create cyber-physical systems for pharmaceutical care services in p-health. In the present period, cyber-physical systems for pharmaceutical care services are dealing with a variety of important concerns and demanding conditions, i.e., problems and obstacles that need be overcome to create a trustworthy and effective medical system. This essay offers a thorough examination of CPS's architectural difficulties and emerging tendencies.
Authored by Swati Devliyal, Sachin Sharma, Himanshu Goyal
Considering the evolution of technology, the need to secure data is growing fast. When we turn our attention to the healthcare field, securing data and assuring privacy are critical conditions that must be accomplished. The information is sensitive and confidential, and the exchange rate is very fast. Over the years, the healthcare domain has gradually seen a growth of interest regarding the interconnectivity of different processes to optimize and improve the services that are provided. Therefore, we need intelligent complex systems that can collect and transport sensitive data in a secure way. These systems are called cyber-physical systems. In healthcare domain, these complex systems are named medical cyber physical systems. The paper presents a brief description of the above-mentioned intelligent systems. Then, we focus on wireless sensor networks and the issues and challenges that occur in securing sensitive data and what improvements we propose on this subject. In this paper we tried to provide a detailed overview about cyber-physical systems, medical cyber-physical systems, wireless sensor networks and the security issues that can appear.
Authored by Balaban Béatrix-May, Sacală Ştefan, Petrescu-Niţă Alina-Claudia, Simen Radu
Cyber-physical Systems can be defined as a complex networked control system, which normally develop by combining several physical components with the cyber space. Cyber Physical System are already a part of our daily life. As its already being a part of everyone life, CPS also have great potential security threats and can be vulnerable to various cyber-attacks without showing any sign directly to component failure. To protect user security and privacy is a fundamental concern of any kind of system; either it’s a simple web application or supplicated professional system. Digital Multifactor authentication is one of the best ways to make secure authentication. It covers many different areas of a Cyber-connected world, including online payments, communications, access right management, etc. Most of the time, Multifactor authentication is little complex as it requires extra step from users. This paper will discuss the evolution from single authentication to Multi-Factor Authentication (MFA) starting from Single-Factor Authentication (SFA) and through Two-Factor Authentication (2FA). This paper seeks to analyze and evaluate the most prominent authentication techniques based on accuracy, cost, and feasibility of implementation. We also suggest several authentication schemes which incorporate with Multifactor authentication for CPS.
Authored by Mangal Sain, Oloviddin Normurodov, Chen Hong, Kueh Hui
This work-in-progress paper proposes a design methodology that addresses the complexity and heterogeneity of cyber-physical systems (CPS) while simultaneously proving resilient control logic and security properties. The design methodology involves a formal methods-based approach by translating the complex control logic and security properties of a water flow CPS into timed automata. Timed automata are a formal model that describes system behaviors and properties using mathematics-based logic languages with precision. Due to the semantics that are used in developing the formal models, verification techniques, such as theorem proving and model checking, are used to mathematically prove the specifications and security properties of the CPS. This work-in-progress paper aims to highlight the need for formalizing plant models by creating a timed automata of the physical portions of the water flow CPS. Extending the time automata with control logic, network security, and privacy control processes is investigated. The final model will be formally verified to prove the design specifications of the water flow CPS to ensure efficacy and security.
Authored by Robert Lois, Daniel Cole
Embedded devices are becoming increasingly pervasive in safety-critical systems of the emerging cyber-physical world. While trusted execution environments (TEEs), such as ARM TrustZone, have been widely deployed in mobile platforms, little attention has been given to deployment on real-time cyber-physical systems, which present a different set of challenges compared to mobile applications. For safety-critical cyber-physical systems, such as autonomous drones or automobiles, the current TEE deployment paradigm, which focuses only on confidentiality and integrity, is insufficient. Computation in these systems also needs to be completed in a timely manner (e.g., before the car hits a pedestrian), putting a much stronger emphasis on availability.To bridge this gap, we present RT-TEE, a real-time trusted execution environment. There are three key research challenges. First, RT-TEE bootstraps the ability to ensure availability using a minimal set of hardware primitives on commodity embedded platforms. Second, to balance real-time performance and scheduler complexity, we designed a policy-based event-driven hierarchical scheduler. Third, to mitigate the risks of having device drivers in the secure environment, we designed an I/O reference monitor that leverages software sandboxing and driver debloating to provide fine-grained access control on peripherals while minimizing the trusted computing base (TCB).We implemented prototypes on both ARMv8-A and ARMv8-M platforms. The system is tested on both synthetic tasks and real-life CPS applications. We evaluated rover and plane in simulation and quadcopter both in simulation and with a real drone.
Authored by Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, Ning Zhang
Networked cyber-physical systems must balance the utility of communication for monitoring and control with the risks of revealing private information. Many of these networks, such as wireless communication, are vulnerable to eavesdrop-ping by illegitimate recipients. Obfuscation can hide information from eaves-droppers by ensuring their observations are ambiguous or misleading. At the same time, coordination with recipients can enable them to interpret obfuscated data. In this way, we propose an obfuscation framework for dynamic systems that ensures privacy against eavesdroppers while maintaining utility for legitimate recipients. We consider eavesdroppers unaware of obfuscation by requiring that their observations are consistent with the original system, as well as eaves-droppers aware of the goals of obfuscation by assuming they learn of the specific obfuscation implementation used. We present a method for bounded synthesis of solutions based upon distributed reactive synthesis and the synthesis of publicly-known obfuscators.
Authored by Andrew Wintenberg, Stéphane Lafortune, Necmiye Ozay
Modern day cyber-infrastructures are critically dependent on each other to provide essential services. Current frameworks typically focus on the risk analysis of an isolated infrastructure. Evaluation of potential disruptions taking the heterogeneous cyber-infrastructures is vital to note the cascading disruption vectors and determine the appropriate interventions to limit the damaging impact. This paper presents a cyber-security risk assessment framework for the interconnected cyber-infrastructures. Our methodology is designed to be comprehensive in terms of accommodating accidental incidents and malicious cyber threats. Technically, we model the functional dependencies between the different architectures using reliability block diagrams (RBDs). RBDs are convenient, yet powerful graphical diagrams, which succinctly describe the functional dependence between the system components. The analysis begins by selecting a service from the many services that are outputted by the synchronized operation of the architectures whose disruption is deemed critical. For this service, we design an attack fault tree (AFT). AFT is a recent graphical formalism that combines the two popular formalisms of attack trees and fault trees. We quantify the attack-fault tree and compute the risk metrics - the probability of a disruption and the damaging impact. For this purpose, we utilize the open source ADTool. We show the efficacy of our framework with an example outage incident.
Authored by Rajesh Kumar
As cyber threats become highly damaging and complex, a new cybersecurity compliance certification model has been developed by the Department of Defense (DoD) to secure its Defense Industrial Base (DIB), and communication with its private partners. These partners or contractors are obligated by the Defense Federal Acquisition Regulations (DFARS) to be compliant with the latest standards in computer and data security. The Cybersecurity Maturity Model Certification (CMMC), and it is built upon existing DFARS 252.204-7012 and the NIST SP 800–171 controls. As of 2020, the DoD has incorporated DFARS and the National Institute of Standards and Technology (NIST) recommended security practices into what is now the CMMC. This paper presents the most commonly identified Security-Control-Deficiencies (SCD) faced, the attacks mitigated by addressing these SCD, and remediations applied to 127 DoD contractors in order to bring them into compliance with the CMMC guidelines. An analysis is done on what vulnerabilities are most prominent in the companies, and remediations applied to ensure these vulnerabilities are better avoided and the DoD supply-chain is more secure from attacks.
Authored by Vijay Sundararajan, Arman Ghodousi, Eric Dietz
In the prevailing situation, the sports like economic, industrial, cultural, social, and governmental activities are carried out in the online world. Today's international is particularly dependent on the wireless era and protective these statistics from cyber-assaults is a hard hassle. The reason for cyber-assaults is to damage thieve the credentials. In a few other cases, cyber-attacks ought to have a navy or political functions. The damages are PC viruses, facts break, DDS, and exceptional attack vectors. To this surrender, various companies use diverse answers to prevent harm because of cyberattacks. Cyber safety follows actual-time data at the modern-day-day IT data. So, far, numerous techniques have proposed with the resource of researchers around the area to prevent cyber-attacks or lessen the harm due to them. The cause of this has a look at is to survey and comprehensively evaluate the usual advances supplied around cyber safety and to analyse the traumatic situations, weaknesses, and strengths of the proposed techniques. Different sorts of attacks are taken into consideration in element. In addition, evaluation of various cyber-attacks had been finished through the platform called Kali Linux. It is predicted that the complete assessment has a have a study furnished for college students, teachers, IT, and cyber safety researchers might be beneficial.
Authored by Gururaj L, Soundarya C, Janhavi V, Lakshmi H, Prassan MJ
Cyber threats can cause severe damage to computing infrastructure and systems as well as data breaches that make sensitive data vulnerable to attackers and adversaries. It is therefore imperative to discover those threats and stop them before bad actors penetrating into the information systems.Threats hunting algorithms based on machine learning have shown great advantage over classical methods. Reinforcement learning models are getting more accurate for identifying not only signature-based but also behavior-based threats. Quantum mechanics brings a new dimension in improving classification speed with exponential advantage. The accuracy of the AI/ML algorithms could be affected by many factors, from algorithm, data, to prejudicial, or even intentional. As a result, AI/ML applications need to be non-biased and trustworthy.In this research, we developed a machine learning-based cyber threat detection and assessment tool. It uses two-stage (both unsupervised and supervised learning) analyzing method on 822,226 log data recorded from a web server on AWS cloud. The results show the algorithm has the ability to identify the threats with high confidence.
Authored by Shuangbao Wang, Md Arafin, Onyema Osuagwu, Ketchiozo Wandji
Supply chain cyberattacks that exploit insecure third-party software are a growing concern for the security of the electric power grid. These attacks seek to deploy malicious software in grid control devices during the fabrication, shipment, installation, and maintenance stages, or as part of routine software updates. Malicious software on grid control devices may inject bad data or execute bad commands, which can cause blackouts and damage power equipment. This paper describes an experimental setup to simulate the software update process of a commercial power relay as part of a hardware-in-the-loop simulation for grid supply chain cyber-security assessment. The laboratory setup was successfully utilized to study three supply chain cyber-security use cases.
Authored by Joseph Keller, Shuva Paul, Santiago Grijalva, Vincent Mooney
The damage or destruction of Critical Infrastructures (CIs) affect societies’ sustainable functioning. Therefore, it is crucial to have effective methods to assess the risk and resilience of CIs. Failure Mode and Effects Analysis (FMEA) and Failure Mode Effects and Criticality Analysis (FMECA) are two approaches to risk assessment and criticality analysis. However, these approaches are complex to apply to intricate CIs and associated Cyber-Physical Systems (CPS). We provide a top-down strategy, starting from a high abstraction level of the system and progressing to cover the functional elements of the infrastructures. This approach develops from FMECA but estimates risks and focuses on assessing resilience. We applied the proposed technique to a real-world CI, predicting how possible improvement scenarios may influence the overall system resilience. The results show the effectiveness of our approach in benchmarking the CI resilience, providing a cost-effective way to evaluate plausible alternatives concerning the improvement of preventive measures.
Authored by Gonçalo Carvalho, Nadia Medeiros, Henrique Madeira, Bruno Cabral
In this era, with a great extent of automation and connection, modern production processes are highly prone to cyber-attacks. The sensor-controller chain becomes an obvious target for attacks because sensors are commonly used to regulate production facilities. In this research, we introduce a new control configuration for the system, which is sensitive to time delay attacks (TDA), in which data transfer from the sensor to the controller is intentionally delayed. The attackers want to disrupt and damage the system by forcing controllers to use obsolete data about the system status. In order to improve the accuracy of delay identification and prediction, as well as erroneous limit and estimation for control, a new control structure is developed by an Internal Model Control (IMC) based Proportional-Integral-Derivative (PID) scheme with a fractional filter. An additional concept is included to mitigate the effect of time delay attack, i.e., the smith predictor. Simulation studies of the established control framework have been implemented with two numerical examples. The performance assessment of the proposed method has been done based on integral square error (ISE), integral absolute error (IAE) and total variation (TV).
Authored by Vivek Kumar, Yogesh Hote
A simulation-based optimization framework is developed to con-currently design the system and control parameters to meet de-sired performance and operational resiliency objectives. Leveraging system information from both data and models of varying fideli-ties, a rigorous probabilistic approach is employed for co-design experimentation. Significant economic benefits and resilience im-provements are demonstrated using co-design compared to existing sequential designs for cyber-physical systems.
Authored by Soumya Vasisht, Aowabin Rahman, Thiagarajan Ramachandran, Arnab Bhattacharya, Veronica Adetola
Cyber-Physical System (CPS) represents systems that join both hardware and software components to perform real-time services. Maintaining the system's reliability is critical to the continuous delivery of these services. However, the CPS running environment is full of uncertainties and can easily lead to performance degradation. As a result, the need for a recovery technique is highly needed to achieve resilience in the system, with keeping in mind that this technique should be as green as possible. This early doctorate proposal, suggests a game theory solution to achieve resilience and green in CPS. Game theory has been known for its fast performance in decision-making, helping the system to choose what maximizes its payoffs. The proposed game model is described over a real-life collaborative artificial intelligence system (CAIS), that involves robots with humans to achieve a common goal. It shows how the expected results of the system will achieve the resilience of CAIS with minimized CO2 footprint.
Authored by Diaeddin Rimawi
Cyber-Physical System (CPS) is becoming increasingly complicated and integrated into our daily lives, laying the foundation for advanced infrastructures, commodities, and services. In this regard, operational continuity of the system is the most critical objective, and cyber resilience quantification to evaluate and enhance it has garnered attention. However, understanding of the increasingly critical cyber risks is weak, with the focus being solely on the damage that occurs in the physical domain. To address this gap, this work takes aim at shedding some light on the cyber resilience quantification of CPS. We review the numerous resilience quantification techniques presented to date through several metrics to provide systematization of knowledge (SoK). In addition, we discuss the challenges of current quantification methods and give ideas for future research that will lead to more precise cyber resilience measurements.
Authored by Hwiwon Lee, Sosun Kim, Huy Kim
In recent years, with the occurrence of climate change and various extreme events, the research on the resistance of physical information systems to large-scale complex faults is of great significance. Propose a power information system to deal with complex faults in extreme weather, establish an anti-interference framework, construct a regional anti-interference strategy based on regional load output matching and topological connectivity, and propose branch active power adjustment methods to reduce disasters. In order to resist the risk of system instability caused by overrun of branch power and phase disconnection, the improved IEEE33 node test system simulation shows that this strategy can effectively reduce the harm of large-scale and complex faults.
Authored by Bo Wang, Zhixiong Zhang, Jingyi Wang, Chuangxin Guo, Jie Hao
Cyber-Physical Systems (CPS) have a physical part that can interact with sensors and actuators. The data that is read from sensors and the one generated to drive actuators is crucial for the correct operation of this class of devices. Most implementations trust the data being read from sensors and the outputted data to actuators. Real-time validation of the input and output of data for any system is crucial for the safety of its operation. This paper proposes an architecture for handling this issue through smart data guards detached from sensors and controllers and acting solely on the data. This mitigates potential issues of malfunctioning sensors and intentional sensor and controller attacks. The data guards understand the expected data, can detect anomalies and can correct them in real-time. This approach adds more guarantees for fault-tolerant behavior in the presence of attacks and sensor failures.
Authored by Anton Hristozov, Eric Matson, Eric Dietz, Marcus Rogers
Cyber threats have been a major issue in the cyber security domain. Every hacker follows a series of cyber-attack stages known as cyber kill chain stages. Each stage has its norms and limitations to be deployed. For a decade, researchers have focused on detecting these attacks. Merely watcher tools are not optimal solutions anymore. Everything is becoming autonomous in the computer science field. This leads to the idea of an Autonomous Cyber Resilience Defense algorithm design in this work. Resilience has two aspects: Response and Recovery. Response requires some actions to be performed to mitigate attacks. Recovery is patching the flawed code or back door vulnerability. Both aspects were performed by human assistance in the cybersecurity defense field. This work aims to develop an algorithm based on Reinforcement Learning (RL) with a Convoluted Neural Network (CNN), far nearer to the human learning process for malware images. RL learns through a reward mechanism against every performed attack. Every action has some kind of output that can be classified into positive or negative rewards. To enhance its thinking process Markov Decision Process (MDP) will be mitigated with this RL approach. RL impact and induction measures for malware images were measured and performed to get optimal results. Based on the Malimg Image malware, dataset successful automation actions are received. The proposed work has shown 98% accuracy in the classification, detection, and autonomous resilience actions deployment.
Authored by Kainat Rizwan, Mudassar Ahmad, Muhammad Habib
Owing to the decreasing costs of distributed energy resources (DERs) as well as decarbonization policies, power systems are undergoing a modernization process. The large deployment of DERs together with internet of things (IoT) devices provide a platform for peer-to-peer (P2P) energy trading in active distribution networks. However, P2P energy trading with IoT devices have driven the grid more vulnerable to cyber-physical threats. To this end, in this paper, a resilience-oriented P2P energy exchange model is developed considering three phase unbalanced distribution systems. In addition, various scenarios for vulnerability assessment of P2P energy exchanges considering adverse prosumers and consumers, who provide false information regarding the price and quantity with the goal of maximum financial benefit and system operation disruption, are considered. Techno-economic survivability analysis against these attacks are investigated on a IEEE 13-node unbalanced distribution test system. Simulation results demonstrate that adverse peers can affect the physical operation of grid, maximize their benefits, and cause financial loss of other agents.
Authored by Hamed Haggi, Wei Sun