This paper addresses the issues of fault tolerance (FT) and intrusion detection (ID) in the Software-defined networking (SDN) environment. We design an integrated model that combines the FT-Manager as an FT mechanism and an ID-Manager, as an ID technique to collaboratively detect and mitigate threats in the SDN. The ID-Manager employs a machine learning (ML) technique to identify anomalous traffic accurately and effectively. Both techniques in the integrated model leverage the controller-switches communication for real-time network statistics collection. While the full implementation of the framework is yet to be realized, experimental evaluations have been conducted to identify the most suitable ML algorithm for ID-Manager to classify network traffic using a benchmarking dataset and various performance metrics. The principal component analysis method was utilized for feature engineering optimization, and the results indicate that the Random Forest (RF) classifier outperforms other algorithms with 99.9\% accuracy, precision, and recall. Based on these findings, the paper recommended RF as the ideal choice for ID design in the integrated model. We also stress the significance and potential benefits of the integrated model to sustain SDN network security and dependability.
Authored by Bassey Isong, Thupae Ratanang, Naison Gasela, Adnan Abu-Mahfouz
Container-based virtualization has gained momentum over the past few years thanks to its lightweight nature and support for agility. However, its appealing features come at the price of a reduced isolation level compared to the traditional host-based virtualization techniques, exposing workloads to various faults, such as co-residency attacks like container escape. In this work, we propose to leverage the automated management capabilities of containerized environments to derive a Fault and Intrusion Tolerance (FIT) framework based on error detection-recovery and fault treatment. Namely, we aim at deriving a specification-based error detection mechanism at the host level to systematically and formally capture security state errors indicating breaches potentially caused by malicious containers. Although the paper focuses on security side use cases, results are logically extendable to accidental faults. Our aim is to immunize the target environments against accidental and malicious faults and preserve their core dependability and security properties.
Authored by Taous Madi, Paulo Esteves-Verissimo
Malware, or software designed with harmful intent, is an ever-evolving threat that can have drastic effects on both individuals and institutions. Neural network malware classification systems are key tools for combating these threats but are vulnerable to adversarial machine learning attacks. These attacks perturb input data to cause misclassification, bypassing protective systems. Existing defenses often rely on enhancing the training process, thereby increasing the model’s robustness to these perturbations, which is quantified using verification. While training improvements are necessary, we propose focusing on the verification process used to evaluate improvements to training. As such, we present a case study that evaluates a novel verification domain that will help to ensure tangible safeguards against adversaries and provide a more reliable means of evaluating the robustness and effectiveness of anti-malware systems. To do so, we describe malware classification and two types of common malware datasets (feature and image datasets), demonstrate the certified robustness accuracy of malware classifiers using the Neural Network Verification (NNV) and Neural Network Enumeration (nnenum) tools1, and outline the challenges and future considerations necessary for the improvement and refinement of the verification of malware classification. By evaluating this novel domain as a case study, we hope to increase its visibility, encourage further research and scrutiny, and ultimately enhance the resilience of digital systems against malicious attacks.
Authored by Preston Robinette, Diego Lopez, Serena Serbinowska, Kevin Leach, Taylor Johnson
This work focuses on the problem of hyper-parameter tuning (HPT) for robust (i.e., adversarially trained) models, shedding light on the new challenges and opportunities arising during the HPT process for robust models. To this end, we conduct an extensive experimental study based on three popular deep models and explore exhaustively nine (discretized) hyper-parameters (HPs), two fidelity dimensions, and two attack bounds, for a total of 19208 configurations (corresponding to 50 thousand GPU hours). Through this study, we show that the complexity of the HPT problem is further exacerbated in adversarial settings due to the need to independently tune the HPs used during standard and adversarial training: succeeding in doing so (i.e., adopting different HP settings in both phases) can lead to a reduction of up to 80% and 43% of the error for clean and adversarial inputs, respectively. We also identify new opportunities to reduce the cost of HPT for robust models. Specifically, we propose to leverage cheap adversarial training methods to obtain inexpensive, yet highly correlated, estimations of the quality achievable using more robust/expensive state-of-the-art methods. We show that, by exploiting this novel idea in conjunction with a recent multi-fidelity optimizer (taKG), the efficiency of the HPT process can be enhanced by up to 2.1x.
Authored by Pedro Mendes, Paolo Romano, David Garlan
Neural networks are often overconfident about their pre- dictions, which undermines their reliability and trustworthiness. In this work, we present a novel technique, named Error-Driven Un- certainty Aware Training (EUAT), which aims to enhance the ability of neural models to estimate their uncertainty correctly, namely to be highly uncertain when they output inaccurate predictions and low uncertain when their output is accurate. The EUAT approach oper- ates during the model’s training phase by selectively employing two loss functions depending on whether the training examples are cor- rectly or incorrectly predicted by the model. This allows for pursu- ing the twofold goal of i) minimizing model uncertainty for correctly predicted inputs and ii) maximizing uncertainty for mispredicted in- puts, while preserving the model’s misprediction rate. We evaluate EUAT using diverse neural models and datasets in the image recog- nition domains considering both non-adversarial and adversarial set- tings. The results show that EUAT outperforms existing approaches for uncertainty estimation (including other uncertainty-aware train- ing techniques, calibration, ensembles, and DEUP) by providing un- certainty estimates that not only have higher quality when evaluated via statistical metrics (e.g., correlation with residuals) but also when employed to build binary classifiers that decide whether the model’s output can be trusted or not and under distributional data shifts.
Authored by Pedro Mendes, Paolo Romano, David Garlan
This paper focuses on the problem of optimizing system utility of Machine-Learning (ML) based systems in the presence of ML mispredictions. This is achieved via the use of self-adaptive systems and through the execution of adaptation tactics, such as model retraining, which operate at the level of individual ML components. To address this problem, we propose a probabilistic modeling framework that reasons about the cost/benefit trade-offs associated with adapting ML components. The key idea of the proposed approach is to decouple the problems of estimating (i) the expected performance improvement after adaptation and (ii) the impact of ML adaptation on overall system utility. We apply the proposed framework to engineer a self-adaptive ML-based fraud-detection system, which we evaluate using a publicly-available, real fraud detection data-set. We initially consider a scenario in which information on model’s quality is immediately available. Next we relax this assumption by integrating (and extending) state-of-the-art techniques for estimating model’s quality in the proposed framework. We show that by predicting the system utility stemming from retraining a ML component, the probabilistic model checker can generate adaptation strategies that are significantly closer to the optimal, as compared against baselines such as periodic or reactive retraining.
Authored by Maria Casimiro, Diogo Soares, David Garlan, Luís Rodrigues, Paolo Romano
The rise in autonomous Unmanned Aerial Vehicles (UAVs) for objectives requiring long-term navigation in diverse environments is attributed to their compact, agile, and accessible nature. Specifically, problems exploring dynamic obstacle and collision avoidance are of increasing interest as UAVs become more popular for tasks such as transportation of goods, formation control, and search and rescue routines. Prioritizing safety in the design of autonomous UAVs is crucial to prevent costly collisions that endanger pedestrians, mission success, and property. Safety must be ensured in these systems whose behavior emerges from multiple software components including learning-enabled components. Learning-enabled components, optimized through machine learning (ML) or reinforcement learning (RL) require adherence to safety constraints while interacting with the environment during training and deployment, as well as adaptation to new unknown environments. In this paper, we safeguard autonomous UAV navigation by designing agents based on behavior trees with learning-enabled components, referred to as Evolving Behavior Trees (EBTs). We learn the structure of EBTs with explicit safety components, optimize learning-enabled components with safe hierarchical RL, deploy, and update specific components for transfer to unknown environments. Safe and successful navigation is evaluated using a realistic UAV simulation environment. The results demonstrate the design of an explainable learned EBT structure, incurring near-zero collisions during training and deployment, with safe time-efficient transfer to an unknown environment.
Authored by Nicholas Potteiger, Xenofon Koutsoukos
The purpose of this article is to explore the use of wireless communication technology for network connectivity in ocean liner environments, which is different from the data security system of wired networks. The key work is based on data security practices in the ocean liner environment, including building a data security classification system and developing different security strategies in data collection, storage, transmission, processing, and other aspects. In addition, machine learning methods are introduced into security warning strategies to intelligently analyze data security risks and make decisions.
Authored by He Jing, Chen Ming-jun
Problems such as the increase in the number of private vehicles with the population, the rise in environmental pollution, the emergence of unmet infrastructure and resource problems, and the decrease in time efficiency in cities have put local governments, cities, and countries in search of solutions. These problems faced by cities and countries are tried to be solved in the concept of smart cities and intelligent transportation by using information and communication technologies in line with the needs. While designing intelligent transportation systems (ITS), beyond traditional methods, big data should be designed in a state-of-the-art and appropriate way with the help of methods such as artificial intelligence, machine learning, and deep learning. In this study, a data-driven decision support system model was established to help the business make strategic decisions with the help of intelligent transportation data and to contribute to the elimination of public transportation problems in the city. Our study model has been established using big data technologies and business intelligence technologies: a decision support system including data sources layer, data ingestion/ collection layer, data storage and processing layer, data analytics layer, application/presentation layer, developer layer, and data management/ data security layer stages. In our study, the decision support system was modeled using ITS data supported by big data technologies, where the traditional structure could not find a solution. This paper aims to create a basis for future studies looking for solutions to the problems of integration, storage, processing, and analysis of big data and to add value to the literature that is missing within the framework of the model. We provide both the lack of literature, eliminate the lack of models before the application process of existing data sets to the business intelligence architecture and a model study before the application to be carried out by the authors.
Authored by Kutlu Sengul, Cigdem Tarhan, Vahap Tecim
Sustainability within the built environment is increasingly important to our global community as it minimizes environmental impact whilst providing economic and social benefits. Governments recognize the importance of sustainability by providing economic incentives and tenants, particularly large enterprises seek facilities that align with their corporate social responsibility objectives. Claiming sustainability outcomes clearly has benefits for facility owners and facility occupants that have sustainability as part of their business objectives but there are also incentives to overstate the value delivered or only measure parts of the facility lifecycle that provide attractive results. Whilst there is a plethora of research on Building Information Management (BIM) systems within the construction industry there has been limited research on BIM in the facilities management \& sustainability fields. The significant contribution with this research is the integration of blockchain for the purposes of transaction assurance with development of a working model spanning BIM and blockchain underpinning phase one of this research. From an industry perspective the contribution of this paper is to articulate a path to integrate a wide range of mature and emerging technologies into solutions that deliver trusted results for government, facility owners, tenants and other directly impacted stakeholders to assess the sustainability impact.
Authored by Luke Desmomd, Mohamed Salama
This study explores how AI-driven personal finance advisors can significantly improve individual financial well-being. It addresses the complexity of modern finance, emphasizing the integration of AI for informed decision-making. The research covers challenges like budgeting, investment planning, debt management, and retirement preparation. It highlights AI s capabilities in data-driven analysis, predictive modeling, and personalized recommendations, particularly in risk assessment, portfolio optimization, and real-time market monitoring. The paper also addresses ethical and privacy concerns, proposing a transparent deployment framework. User acceptance and trust-building are crucial for widespread adoption. A case study demonstrates enhanced financial literacy, returns, and overall well-being with AI-powered advisors, underscoring their potential to revolutionize financial wellness. The study emphasizes responsible implementation and trust-building for ethical and effective AI deployment in personal finance.
Authored by Parth Pangavhane, Shivam Kolse, Parimal Avhad, Tushar Gadekar, N. Darwante, S. Chaudhari
The proliferation of sensitive information being stored online highlights the pressing need for secure and efficient user authentication methods. To address this issue, this paper presents a novel zero-effort two-factor authentication (2FA) approach that combines the unique characteristics of a user s environment and Machine Learning (ML) to confirm their identity. Our proposed approach utilizes Wi-Fi radio wave transmission and ML algorithms to analyze beacon frame characteristics and Received Signal Strength Indicator (RSSI) values from Wi-Fi access points to determine the user s location. The aim is to provide a secure and efficient method of authentication without the need for additional hardware or software. A prototype was developed using Raspberry Pi devices and experiments were conducted to demonstrate the effectiveness and practicality of the proposed approach. Results showed that the proposed system can significantly enhance the security of sensitive information in various industries such as finance, healthcare, and retail. This study sheds light on the potential of Wi-Fi radio waves and RSSI values as a means of user authentication and the power of ML to identify patterns in wireless signals for security purposes. The proposed system holds great promise in revolutionizing the field of 2FA and user authentication, offering a new era of secure and seamless access to sensitive information.
Authored by Ali AlQahtani, Thamraa Alshayeb
Cybersecurity is an increasingly critical aspect of modern society, with cyber attacks becoming more sophisticated and frequent. Artificial intelligence (AI) and neural network models have emerged as promising tools for improving cyber defense. This paper explores the potential of AI and neural network models in cybersecurity, focusing on their applications in intrusion detection, malware detection, and vulnerability analysis. Intruder detection, or "intrusion detection," is the process of identifying Invasion of Privacy to a computer system. AI-based security systems that can spot intrusions (IDS) use AI-powered packet-level network traffic analysis and intrusion detection patterns to signify an assault. Neural network models can also be used to improve IDS accuracy by modeling the behavior of legitimate users and detecting anomalies. Malware detection involves identifying malicious software on a computer system. AI-based malware machine-learning algorithms are used by detecting systems to assess the behavior of software and recognize patterns that indicate malicious activity. Neural network models can also serve to hone the precision of malware identification by modeling the behavior of known malware and identifying new variants. Vulnerability analysis involves identifying weaknesses in a computer system that could be exploited by attackers. AI-based vulnerability analysis systems use machine learning algorithms to analyze system configurations and identify potential vulnerabilities. Neural network models can also be used to improve the accuracy of vulnerability analysis by modeling the behavior of known vulnerabilities and identifying new ones. Overall, AI and neural network models have significant potential in cybersecurity. By improving intrusion detection, malware detection, and vulnerability analysis, they can help organizations better defend against cyber attacks. However, these technologies also present challenges, including a lack of understanding of the importance of data in machine learning and the potential for attackers to use AI themselves. As such, careful consideration is necessary when implementing AI and neural network models in cybersecurity.
Authored by D. Sugumaran, Y. John, Jansi C, Kireet Joshi, G. Manikandan, Geethamanikanta Jakka
Anomaly detection is a challenge well-suited to machine learning and in the context of information security, the benefits of unsupervised solutions show significant promise. Recent attention to Graph Neural Networks (GNNs) has provided an innovative approach to learn from attributed graphs. Using a GNN encoder-decoder architecture, anomalous edges between nodes can be detected during the reconstruction phase. The aim of this research is to determine whether an unsupervised GNN model can detect anomalous network connections in a static, attributed network. Network logs were collected from four corporate networks and one artificial network using endpoint monitoring tools. A GNN-based anomaly detection system was designed and employed to score and rank anomalous connections between hosts. The model was validated against four realistic experimental scenarios against the four large corporate networks and the smaller artificial network environment. Although quantitative metrics were affected by factors including the scale of the network, qualitative assessments indicated that anomalies from all scenarios were detected. The false positives across each scenario indicate that this model in its current form is useful as an initial triage, though would require further improvement to become a performant detector. This research serves as a promising step for advancing this methodology in detecting anomalous network connections. Future work to improve results includes narrowing the scope of detection to specific threat types and a further focus on feature engineering and selection.
Authored by Charlie Grimshaw, Brian Lachine, Taylor Perkins, Emilie Coote
In recent times, the research looks into the measures taken by financial institutions to secure their systems and reduce the likelihood of attacks. The study results indicate that all cultures are undergoing a digital transformation at the present time. The dawn of the Internet ushered in an era of increased sophistication in many fields. There has been a gradual but steady shift in attitude toward digital and networked computers in the business world over the past few years. Financial organizations are increasingly vulnerable to external cyberattacks due to the ease of usage and positive effects. They are also susceptible to attacks from within their own organisation. In this paper, we develop a machine learning based quantitative risk assessment model that effectively assess and minimises this risk. Quantitative risk calculation is used since it is the best way for calculating network risk. According to the study, a network s vulnerability is proportional to the number of times its threats have been exploited and the amount of damage they have caused. The simulation is used to test the model s efficacy, and the results show that the model detects threats more effectively than the other methods.
Authored by Lavanya M, Mangayarkarasi S
Cyber security is a critical problem that causes data breaches, identity theft, and harm to millions of people and businesses. As technology evolves, new security threats emerge as a result of a dearth of cyber security specialists equipped with up-to-date information. It is hard for security firms to prevent cyber-attacks without the cooperation of senior professionals. However, by depending on artificial intelligence to combat cyber-attacks, the strain on specialists can be lessened. as the use of Artificial Intelligence (AI) can improve Machine Learning (ML) approaches that can mine data to detect the sources of cyberattacks or perhaps prevent them as an AI method, it enables and facilitates malware detection by utilizing data from prior cyber-attacks in a variety of methods, including behavior analysis, risk assessment, bot blocking, endpoint protection, and security task automation. However, deploying AI may present new threats, therefore cyber security experts must establish a balance between risk and benefit. While AI models can aid cybersecurity experts in making decisions and forming conclusions, they will never be able to make all cybersecurity decisions and judgments.
Authored by Safiya Alawadhi, Areej Zowayed, Hamad Abdulla, Moaiad Khder, Basel Ali
Anomaly detection is a challenge well-suited to machine learning and in the context of information security, the benefits of unsupervised solutions show significant promise. Recent attention to Graph Neural Networks (GNNs) has provided an innovative approach to learn from attributed graphs. Using a GNN encoder-decoder architecture, anomalous edges between nodes can be detected during the reconstruction phase. The aim of this research is to determine whether an unsupervised GNN model can detect anomalous network connections in a static, attributed network. Network logs were collected from four corporate networks and one artificial network using endpoint monitoring tools. A GNN-based anomaly detection system was designed and employed to score and rank anomalous connections between hosts. The model was validated against four realistic experimental scenarios against the four large corporate networks and the smaller artificial network environment. Although quantitative metrics were affected by factors including the scale of the network, qualitative assessments indicated that anomalies from all scenarios were detected. The false positives across each scenario indicate that this model in its current form is useful as an initial triage, though would require further improvement to become a performant detector. This research serves as a promising step for advancing this methodology in detecting anomalous network connections. Future work to improve results includes narrowing the scope of detection to specific threat types and a further focus on feature engineering and selection.
Authored by Charlie Grimshaw, Brian Lachine, Taylor Perkins, Emilie Coote
There will be a billion smart devices with processing, sensing, and actuation capabilities that can be connected to the Internet under the IoT paradigm. The level of convenience, effectiveness, and automation for consumers is expected to rise owing to promising IoT applications. Privacy is a significant concern in IoT systems, and it is essential to provide users with full awareness and control over the data collected by these systems. The use of privacy-enhancing technologies can help to minimise the risks associated with data collection and processing and ensure that user privacy is protected. Lack of standards for devices with limited resources and heterogeneous technologies intensifies the security issue. There are various emerging and existing technologies that can help to address the security risks in the IoT sector and achieve a high degree of trust in IoT applications. By implementing these technologies and countermeasures, it is possible to improve the security and reliability of IoT systems, ensuring that they can be used safely and effectively in a wide range of applications. This article s intent is to provide a comprehensive investigation of the threats and risks in the IoT industry and to examine some potential countermeasures.
Authored by Jaspreet Singh, Gurpreet Singh, Shradha Negi
An IC used in a safety-critical application such as automotive often requires a long lifetime of more than 10 years. Previously, stress test has been used as a means to establish the accelerated aging model for an IC product under a harsh operating condition. Then, the accelerated aging model is time-stretched to predict an IC’s normal lifetime. However, such a long-stretching prediction may not be very trustworthy. In this work, we present a more refined method to provide higher credibility in the IC lifetime prediction. We streamline in this paper a progressive lifetime prediction method with two phases – the training phase and the inference phase. During the training phase, we collect the aging histories of some training devices under various stress levels. During the inference phase, the extrapolation is performed on the “stressed lifetime” versus the “stress level” space and thereby leading to a more trustworthy prediction of the lifetime.
Authored by Chen-Lin Tsai, Shi-Yu Huang
In the realm of Internet of Things (IoT) devices, the trust management system (TMS) has been enhanced through the utilisation of diverse machine learning (ML) classifiers in recent times. The efficacy of training machine learning classifiers with pre-existing datasets for establishing trustworthiness in IoT devices is constrained by the inadequacy of selecting suitable features. The current study employes a subset of the UNSW-NB15 dataset to compute additional features such as throughput, goodput, packet loss. These features may be combined with the best discriminatory features to distinguish between trustworthy and non-trustworthy IoT networks. In addition, the transformed dataset undergoes filter-based and wrapper-based feature selection methods to mitigate the presence of irrelevant and redundant features. The evaluation of classifiers is performed utilising diverse metrics, including accuracy, precision, recall, F1-score, true positive rate (TPR), and false positive rate (FPR). The performance assessment is conducted both with and without the application of feature selection methodologies. Ultimately, a comparative analysis of the machine learning models is performed, and the findings of the analysis demonstrate that our model s efficacy surpasses that of the approaches utilised in the existing literature.
Authored by Muhammad Aaqib, Aftab Ali, Liming Chen, Omar Nibouche
IoT scenarios face cybersecurity concerns due to unauthorized devices that can impersonate legitimate ones by using identical software and hardware configurations. This can lead to sensitive information leaks, data poisoning, or privilege escalation. Behavioral fingerprinting and ML/DL techniques have been used in the literature to identify devices based on performance differences caused by manufacturing imperfections. In addition, using Federated Learning to maintain data privacy is also a challenge for IoT scenarios. Federated Learning allows multiple devices to collaboratively train a machine learning model without sharing their data, but it requires addressing issues such as communication latency, heterogeneity of devices, and data security concerns. In this sense, Trustworthy Federated Learning has emerged as a potential solution, which combines privacy-preserving techniques and metrics to ensure data privacy, model integrity, and secure communication between devices. Therefore, this work proposes a trustworthy federated learning framework for individual device identification. It first analyzes the existing metrics for trustworthiness evaluation in FL and organizes them into six pillars (privacy, robustness, fairness, explainability, accountability, and federation) for computing the trustworthiness of FL models. The framework presents a modular setup where one component is in charge of the federated model generation and another one is in charge of trustworthiness evaluation. The framework is validated in a real scenario composed of 45 identical Raspberry Pi devices whose hardware components are monitored to generate individual behavior fingerprints. The solution achieves a 0.9724 average F1-Score in the identification on a centralized setup, while the average F1-Score in the federated setup is 0.8320. Besides, a 0.6 final trustworthiness score is achieved by the model on state-of-the-art metrics, indicating that further privacy and robustness techniques are required to improve this score.
Authored by Pedro Sánchez, Alberto Celdrán, Gérôme Bovet, Gregorio Pérez, Burkhard Stiller
The prediction of human trust in machines within decision-aid systems is crucial for improving system performance. However, previous studies have only measured machine performance based on its decision history, failing to account for the machine’s current decision state. This delay in evaluating machine performance can result in biased trust predictions, making it challenging to enhance the overall performance of the human-machine system. To address this issue, this paper proposes incorporating machine estimated performance scores into a human-machine trust prediction model to improve trust prediction accuracy and system performance. We also provide an explanation for how this model can enhance system performance.To estimate the accuracy of the machine’s current decision, we employ the KNN(K-Nearest Neighbors) method and obtain a corresponding performance score. Next, we report the estimated score to humans through the human-machine interaction interface and obtain human trust via trust self-reporting. Finally, we fit the trust prediction model parameters using data and evaluate the model’s efficacy through simulation on a public dataset. Our ablation experiments show that the model reduces trust prediction bias by 3.6\% and significantly enhances the overall accuracy of human-machine decision-making.
Authored by Shaojun Chen, Yun-Bo Zhao, Yang Wang, Junsen Lu
In recent times, the research looks into the measures taken by financial institutions to secure their systems and reduce the likelihood of attacks. The study results indicate that all cultures are undergoing a digital transformation at the present time. The dawn of the Internet ushered in an era of increased sophistication in many fields. There has been a gradual but steady shift in attitude toward digital and networked computers in the business world over the past few years. Financial organizations are increasingly vulnerable to external cyberattacks due to the ease of usage and positive effects. They are also susceptible to attacks from within their own organisation. In this paper, we develop a machine learning based quantitative risk assessment model that effectively assess and minimises this risk. Quantitative risk calculation is used since it is the best way for calculating network risk. According to the study, a network s vulnerability is proportional to the number of times its threats have been exploited and the amount of damage they have caused. The simulation is used to test the model s efficacy, and the results show that the model detects threats more effectively than the other methods.
Authored by Lavanya M, Mangayarkarasi S
Malware detection constitutes a fundamental step in safe and secure computational systems, including industrial systems and the Internet of Things (IoT). Modern malware detection is based on machine learning methods that classify software samples as malware or benign, based on features that are extracted from the samples through static and/or dynamic analysis. State-of-the-art malware detection systems employ Deep Neural Networks (DNNs) whose accuracy increases as more data are analyzed and exploited. However, organizations also have significant privacy constraints and concerns which limit the data that they share with centralized security providers or other organizations, despite the malware detection accuracy improvements that can be achieved with the aggregated data. In this paper we investigate the effectiveness of federated learning (FL) methods for developing and distributing aggregated DNNs among autonomous interconnected organizations. We analyze a solution where multiple organizations use independent malware analysis platforms as part of their Security Operations Centers (SOCs) and train their own local DNN model on their own private data. Exploiting cross-silo FL, we combine these DNNs into a global one which is then distributed to all organizations, achieving the distribution of combined malware detection models using data from multiple sources without sample or feature sharing. We evaluate the approach using the EMBER benchmark dataset and demonstrate that our approach effectively reaches the same accuracy as the non-federated centralized DNN model, which is above 93\%.
Authored by Dimitrios Serpanos, Georgios Xenos
IBMD(Intelligent Behavior-Based Malware Detection) aims to detect and mitigate malicious activities in cloud computing environments by analyzing the behavior of cloud resources, such as virtual machines, containers, and applications.The system uses different machine learning methods like deep learning and artificial neural networks, to analyze the behavior of cloud resources and detect anomalies that may indicate malicious activity. The IBMD system can also monitor and accumulate the data from various resources, such as network traffic and system logs, to provide a comprehensive view of the behavior of cloud resources. IBMD is designed to operate in a cloud computing environment, taking advantage of the scalability and flexibility of the cloud to detect malware and respond to security incidents. The system can also be integrated with existing security tools and services, such as firewalls and intrusion detection systems, to provide a comprehensive security solution for cloud computing environments.
Authored by Jibu Samuel, Mahima Jacob, Melvin Roy, Sayoojya M, Anu Joy