Real-time data transmissions from a vehicle enhance road safety and traffic efficiency by aggregating data in a central server for data analytics. When drivers share their instantaneous vehicular information for a service provider to perform a legitimate task, a curious service provider may also infer private information it has not been authorized for. In this paper, we propose a privacy preservation framework based on the Hilbert Schmidt Independence Criterion (HSIC) to sanitize driving data to protect the vehicle’s trajectory from adversarial inference while ensuring the data is still useful for driver behavior detection. We develop a deep learning model to learn the HSIC sanitizer and demonstrate through two datasets that our approach achieves better utility-privacy trade-offs when compared to three other benchmarks.
Authored by Yi Xu, Chong Wang, Yang Song, Wee Tay
With Covid19 being endemic, it is very essential to continue proper physical hygiene protocols even today to avoid escalation. To ensure hygiene inside educational institutions, many governing bodies-imposed protocols to insist students wear hand gloves and facemasks. Such an implementation, however, has increased surgical waste in and around educational institutions, and also there is a rise in allergies due to the constant use of hand gloves by the students. Hence, a prototype of a hand sanitization-based attendance monitoring system has been proposed in the current research paper. This proposed sanitizer with attendance through remote monitoring (SWARM) uses Raspberry Pi devices to capture the image of a student’s identity card holding the registration number and through a bar code analysis module of computer vision, the ID number is extracted. This ID number is compared with a master attendance file to mark the students’ presence and then the updated file is shared with the concerned teacher via email. Such a setup is installed in the laboratory premise, thereby reducing the unnecessary use and disposal of surgical waste within the educational premise.
Authored by Sai Malla, Khushee Kapoor, Adithya Kejariwal, Vidya Rao, Poornimaa Kundapur
Data poisoning is a type of adversarial attack on training data where an attacker manipulates a fraction of data to degrade the performance of machine learning model. There are several known defensive mechanisms for handling offline attacks, however defensive measures for online learning, where data points arrive sequentially, have not garnered similar interest. In this work, we propose a defense mechanism to minimize the degradation caused by the poisoned training data on a learner's model in an online setup. Our proposed method utilizes an influence function which is a classic technique in robust statistics. Further, we supplement it with the existing data sanitization methods for filtering out some of the poisoned data points. We study the effectiveness of our defense mechanism on multiple datasets and across multiple attack strategies against an online learner.
Authored by Sanjay Seetharaman, Shubham Malaviya, Rosni Vasu, Manish Shukla, Sachin Lodha
Technology plays a vital role in our lives to meet basic hygiene necessities. Currently, the whole world is facing an epidemic situation and the practice of using sanitizers is common nowadays. Sanitizers are used by people to sanitize their hands and bodies. It is also used for sanitizing objects that come into contact with the machine. While sanitizing a small area, people manage to sanitize via pumps, but it becomes difficult to sanitize the same area every day. One of the most severe sanitation concerns is a simple, economic and efficient method to adequately clean the indoor and outdoor environments. In particular, effective sanitization is required for people working in a clinical environment. Recently, some commonly used sanitizer techniques include electric sanitizer spray guns, electric sanitizer disinfectants, etc. However, these sanitizers are not automated, which means a person is required to roam personally with the device to every place to spray the disinfectant or sanitize an area. Therefore, a novel, cost-effective automatic sanitizing machine (ASM) named ASMBoT is designed that can dispense the sanitizer effectively by solving the aforementioned problems.
Authored by Ramneet, Mudita, Deepali Gupta
In recent years, new types of cyber attacks called targeted attacks have been observed. It targets specific organizations or individuals, while usual large-scale attacks do not focus on specific targets. Organizations have published many Word or PDF files on their websites. These files may provide the starting point for targeted attacks if they include hidden data unintentionally generated in the authoring process. Adhatarao and Lauradoux analyzed hidden data found in the PDF files published by security agencies in many countries and showed that many PDF files potentially leak information like author names, details on the information system and computer architecture. In this study, we analyze hidden data of PDF files published on the website of police agencies in Japan and compare the results with Adhatarao and Lauradoux's. We gathered 110989 PDF files. 56% of gathered PDF files contain personal names, organization names, usernames, or numbers that seem to be IDs within the organizations. 96% of PDF files contain software names.
Authored by Taichi Hasegawa, Taiichi Saito, Ryoichi Sasaki
Web services use server-side input sanitization to guard against harmful input. Some web services publish their sanitization logic to make their client interface more usable, e.g., allowing clients to debug invalid requests locally. However, this usability practice poses a security risk. Specifically, services may share the regexes they use to sanitize input strings - and regex-based denial of service (ReDoS) is an emerging threat. Although prominent service outages caused by ReDoS have spurred interest in this topic, we know little about the degree to which live web services are vulnerable to ReDoS. In this paper, we conduct the first black-box study measuring the extent of ReDoS vulnerabilities in live web services. We apply the Consistent Sanitization Assumption: that client-side sanitization logic, including regexes, is consistent with the sanitization logic on the server-side. We identify a service's regex-based input sanitization in its HTML forms or its API, find vulnerable regexes among these regexes, craft ReDoS probes, and pinpoint vulnerabilities. We analyzed the HTML forms of 1,000 services and the APIs of 475 services. Of these, 355 services publish regexes; 17 services publish unsafe regexes; and 6 services are vulnerable to ReDoS through their APIs (6 domains; 15 subdomains). Both Microsoft and Amazon Web Services patched their web services as a result of our disclosure. Since these vulnerabilities were from API specifications, not HTML forms, we proposed a ReDoS defense for a popular API validation library, and our patch has been merged. To summarize: in client-visible sanitization logic, some web services advertise Re-DoS vulnerabilities in plain sight. Our results motivate short-term patches and long-term fundamental solutions. “Make measurable what cannot be measured.” -Galileo Galilei
Authored by Efe Barlas, Xin Du, James Davis
Machine learning (ML) models are increasingly being used in the development of Malware Detection Systems. Existing research in this area primarily focuses on developing new architectures and feature representation techniques to improve the accuracy of the model. However, recent studies have shown that existing state-of-the art techniques are vulnerable to adversarial machine learning (AML) attacks. Among those, data poisoning attacks have been identified as a top concern for ML practitioners. A recent study on clean-label poisoning attacks in which an adversary intentionally crafts training samples in order for the model to learn a backdoor watermark was shown to degrade the performance of state-of-the-art classifiers. Defenses against such poisoning attacks have been largely under-explored. We investigate a recently proposed clean-label poisoning attack and leverage an ensemble-based Nested Training technique to remove most of the poisoned samples from a poisoned training dataset. Our technique leverages the relatively large sensitivity of poisoned samples to feature noise that disproportionately affects the accuracy of a backdoored model. In particular, we show that for two state-of-the art architectures trained on the EMBER dataset affected by the clean-label attack, the Nested Training approach improves the accuracy of backdoor malware samples from 3.42% to 93.2%. We also show that samples produced by the clean-label attack often successfully evade malware classification even when the classifier is not poisoned during training. However, even in such scenarios, our Nested Training technique can mitigate the effect of such clean-label-based evasion attacks by recovering the model's accuracy of malware detection from 3.57% to 93.2%.
Authored by Samson Ho, Achyut Reddy, Sridhar Venkatesan, Rauf Izmailov, Ritu Chadha, Alina Oprea
Healthcare sectors such as hospitals, nursing homes, medical offices, and hospice homes encountered several obstacles due to the outbreak of Covid-19. Wearing a mask, social distancing and sanitization are some of the most effective methods that have been proven to be essential to minimize the virus spread. Lately, medical executives have been appointed to monitor the virus spread and encourage the individuals to follow cautious instructions that have been provided to them. To solve the aforementioned challenges, this research study proposes an autonomous medical assistance robot. The proposed autonomous robot is completely service-based, which helps to monitor whether or not people are wearing a mask while entering any health care facility and sanitizes the people after sending a warning to wear a mask by using the image processing and computer vision technique. The robot not only monitors but also promotes social distancing by giving precautionary warnings to the people in healthcare facilities. The robot can assist the health care officials carrying the necessities of the patent while following them for maintaining a touchless environment. With thorough simulative testing and experiments, results have been finally validated.
Authored by Harshavardhan Vibhandik, Sudhanshu Kale, Samiksha Shende, Mahesh Goudar
The requirements of much larger file sizes, different storage formats, and immersive viewing conditions pose significant challenges to the goals of compressing VR content. At the same time, the great potential of deep learning to advance progress on the video compression problem has driven a significant research effort. Because of the high bandwidth requirements of VR, there has also been significant interest in the use of space-variant, foveated compression protocols. We have integrated these techniques to create an end-to-end deep learning video compression framework. A feature of our new compression model is that it dispenses with the need for expensive search-based motion prediction computations by using displaced frame differences. We also implement foveation in our learning based approach, by introducing a Foveation Generator Unit (FGU) that generates foveation masks which direct the allocation of bits, significantly increasing compression efficiency while making it possible to retain an impression of little to no additional visual loss given an appropriate viewing geometry. Our experiment results reveal that our new compression model, which we call the Foveated MOtionless VIdeo Codec (Foveated MOVI-Codec), is able to efficiently compress videos without computing motion, while outperforming foveated version of both H.264 and H.265 on the widely used UVG dataset and on the HEVC Standard Class B Test Sequences.
Authored by Meixu Chen, Richard Webb, Alan Bovik
In this work we propose a novel deep learning approach for ultra-low bitrate video compression for video conferencing applications. To address the shortcomings of current video compression paradigms when the available bandwidth is extremely limited, we adopt a model-based approach that employs deep neural networks to encode motion information as keypoint displacement and reconstruct the video signal at the decoder side. The overall system is trained in an end-to-end fashion minimizing a reconstruction error on the encoder output. Objective and subjective quality evaluation experiments demonstrate that the proposed approach provides an average bitrate reduction for the same visual quality of more than 60% compared to HEVC.
Authored by Goluck Konuko, Giuseppe Valenzise, Stéphane Lathuilière
With the rapid development of multimedia and short video, there is a growing concern for video copyright protection. Some work has been proposed to add some copyright or fingerprint information to the video to trace the source of the video when it is stolen and protect video copyright. This paper proposes a video watermarking method based on a deep neural network and curriculum learning for watermarking of sliced videos. The first frame of the segmented video is perturbed by an encoder network, which is invisible and can be distinguished by the decoder network. Our model is trained and tested on an online educational video dataset consisting of 2000 different video clips. Experimental results show that our method can successfully discriminate most watermarked and non-watermarked videos with low visual disturbance, which can be achieved even under a relatively high video compression rate(H.264 video compress with CRF 32).
Authored by Zehui Ke, Hailiang Huang, Yingwei Liang, Yi Ding, Xin Cheng, Qingyao Wu
Advanced video compression is required due to the rise of online video content. A strong compression method can help convey video data effectively over a constrained bandwidth. We observed how more internet usage for video conferences, online gaming, and education led to decreased video quality from Netflix, YouTube, and other streaming services in Europe and other regions, particularly during the COVID-19 epidemic. They are represented in standard video compression algorithms as a succession of reference frames after residual frames, and these approaches are limited in their application. Deep learning's introduction and current advancements have the potential to overcome such problems. This study provides a deep learning-based video compression model that meets or exceeds current H.264 standards.
Authored by Dayananda P, Siddharth Subramanian, Vijayalakshmi Suresh, Rishab Shivalli, Shrinkhla Sinha
To exploit high temporal correlations in video frames of the same scene, the current frame is predicted from the already-encoded reference frames using block-based motion estimation and compensation techniques. While this approach can efficiently exploit the translation motion of the moving objects, it is susceptible to other types of affine motion and object occlusion/deocclusion. Recently, deep learning has been used to model the high-level structure of human pose in specific actions from short videos and then generate virtual frames in future time by predicting the pose using a generative adversarial network (GAN). Therefore, modelling the high-level structure of human pose is able to exploit semantic correlation by predicting human actions and determining its trajectory. Video surveillance applications will benefit as stored “big” surveillance data can be compressed by estimating human pose trajectories and generating future frames through semantic correlation. This paper explores a new way of video coding by modelling human pose from the already-encoded frames and using the generated frame at the current time as an additional forward-referencing frame. It is expected that the proposed approach can overcome the limitations of the traditional backward-referencing frames by predicting the blocks containing the moving objects with lower residuals. Our experimental results show that the proposed approach can achieve on average up to 2.83 dB PSNR gain and 25.93% bitrate savings for high motion video sequences compared to standard video coding.
Authored by S Rajin, Manzur Murshed, Manoranjan Paul, Shyh Teng, Jiangang Ma
With the rapid development of artificial intelligence, video target tracking is widely used in the fields of intelligent video surveillance, intelligent transportation, intelligent human-computer interaction and intelligent medical diagnosis. Deep learning has achieved remarkable results in the field of computer vision. The development of deep learning not only breaks through many problems that are difficult to be solved by traditional algorithms, improves the computer's cognitive level of images and videos, but also promotes the progress of related technologies in the field of computer vision. This paper combines the deep learning algorithm and target tracking algorithm to carry out relevant experiments on basketball motion detection video, hoping that the experimental results can be helpful to basketball motion detection video target tracking.
Authored by Tieniu Xia
Video summarization aims to improve the efficiency of large-scale video browsing through producting concise summaries. It has been popular among many scenarios such as video surveillance, video review and data annotation. Traditional video summarization techniques focus on filtration in image features dimension or image semantics dimension. However, such techniques can make a large amount of possible useful information lost, especially for many videos with rich text semantics like interviews, teaching videos, in that only the information relevant to the image dimension will be retained. In order to solve the above problem, this paper considers video summarization as a continuous multi-dimensional decision-making process. Specifically, the summarization model predicts a probability for each frame and its corresponding text, and then we designs reward methods for each of them. Finally, comprehensive summaries in two dimensions, i.e. images and semantics, is generated. This approach is not only unsupervised and does not rely on labels and user interaction, but also decouples the semantic and image summarization models to provide more usable interfaces for subsequent engineering use.
Authored by Haoran Sun, Xiaolong Zhu, Conghua Zhou
One of the biggest studies on public safety and tracking that has sparked a lot of interest in recent years is deep learning approach. Current public safety methods are existent for counting and detecting persons. But many issues such as aberrant occurring in public spaces are seldom detected and reported to raise an automated alarm. Our proposed method detects anomalies (deviation from normal events) from the video surveillance footages using deep learning and raises an alarm, if anomaly is found. The proposed model is trained to detect anomalies and then it is applied to the video recording of the surveillance that is used to monitor public safety. Then the video is assessed frame by frame to detect anomaly and then if there is match, an alarm is raised.
Authored by K Nithesh, Nikhath Tabassum, D. Geetha, R Kumari
In recent years, in order to continuously promote the construction of safe cities, security monitoring equipment has been widely used all over the country. How to use computer vision technology to realize effective intelligent analysis of violence in video surveillance is very important to maintain social stability and ensure people's life and property safety. Video surveillance system has been widely used because of its intuitive and convenient advantages. However, the existing video monitoring system has relatively single function, and generally only has the functions of monitoring video viewing, query and playback. In addition, relevant researchers pay less attention to the complex abnormal behavior of violence, and relevant research often ignores the differences between violent behaviors in different scenes. At present, there are two main problems in video abnormal behavior event detection: the video data of abnormal behavior is less and the definition of abnormal behavior in different scenes cannot be clearly distinguished. The main existing methods are to model normal behavior events first, and then define videos that do not conform to the normal model as abnormal, among which the learning method of video space-time feature representation based on deep learning shows a good prospect. In the face of massive surveillance videos, it is necessary to use deep learning to identify violent behaviors, so that the machine can learn to identify human actions, instead of manually monitoring camera images to complete the alarm of violent behaviors. Network training mainly uses video data set to identify network training.
Authored by Xuezhong Wang
In this paper, we quantify elements representing video features and we propose the bitrate prediction of compressed encoding video using deep learning. Particularly, to overcome disadvantage that we cannot predict bitrate of compression video by using Constant Rate Factor (CRF), we use deep learning. We can find element of video feature with relationship of bitrate when we compress the video, and we can confirm its possibility to find relationship through various deep learning techniques.
Authored by Hankaram Choi, Yongchul Bae
The Internet has evolved to the point that gigabytes and even terabytes of data are generated and processed on a daily basis. Such a stream of data is characterised by high volume, velocity and variety and is referred to as Big Data. Traditional data processing tools can no longer be used to process big data, because they were not designed to handle such a massive amount of data. This problem concerns also cyber security, where tools like intrusion detection systems employ classification algorithms to analyse the network traffic. Achieving a high accuracy attack detection becomes harder when the amount of data increases and the algorithms must be efficient enough to keep up with the throughput of a huge data stream. Due to the challenges posed by a big data environment, some monitoring systems have already shifted from deep packet inspection to flow-level inspection. The goal of this paper is to evaluate the applicability of an existing intrusion detection technique that performs deep packet inspection in a big data setting. We have conducted several experiments with Apache Spark to assess the performance of the technique when classifying anomalous packets, showing that it benefits from the use of Spark.
Authored by Fabrizio Angiulli, Angelo Furfaro, Domenico Saccá, Ludovica Sacco
Attack detection in enterprise networks is increasingly faced with large data volumes, in part high data bursts, and heavily fluctuating data flows that often cause arbitrary discarding of data packets in overload situations which can be used by attackers to hide attack activities. Attack detection systems usually configure a comprehensive set of signatures for known vulnerabilities in different operating systems, protocols, and applications. Many of these signatures, however, are not relevant in each context, since certain vulnerabilities have already been eliminated, or the vulnerable applications or operating system versions, respectively, are not installed on the involved systems. In this paper, we present an approach for clustering data flows to assign them to dedicated analysis units that contain only signature sets relevant for the analysis of these flows. We discuss the performance of this clustering and show how it can be used in practice to improve the efficiency of an analysis pipeline.
Authored by Michael Vogel, Franka Schuster, Fabian Kopp, Hartmut König
Though several deep learning (DL) detectors have been proposed for the network attack detection and achieved high accuracy, they are computationally expensive and struggle to satisfy the real-time detection for high-speed networks. Recently, programmable switches exhibit a remarkable throughput efficiency on production networks, indicating a possible deployment of the timely detector. Therefore, we present Soter, a DL enhanced in-network framework for the accurate real-time detection. Soter consists of two phases. One is filtering packets by a rule-based decision tree running on the Tofino ASIC. The other is executing a well-designed lightweight neural network for the thorough inspection of the suspicious packets on the CPU. Experiments on the commodity switch demonstrate that Soter behaves stably in ten network scenarios of different traffic rates and fulfills per-flow detection in 0.03s. Moreover, Soter naturally adapts to the distributed deployment among multiple switches, guaranteeing a higher total throughput for large data centers and cloud networks.
Authored by Guorui Xie, Qing Li, Chupeng Cui, Peican Zhu, Dan Zhao, Wanxin Shi, Zhuyun Qi, Yong Jiang, Xi Xiao
Network attacks become more complicated with the improvement of technology. Traditional statistical methods may be insufficient in detecting constantly evolving network attack. For this reason, the usage of payload-based deep packet inspection methods is very significant in detecting attack flows before they damage the system. In the proposed method, features are extracted from the byte distributions in the payload and these features are provided to characterize the flows more deeply by using N-Gram analysis methods. The proposed procedure has been tested on IDS 2012 and 2017 datasets, which are widely used in the literature.
Authored by Süleyman Özdel, Pelin Ateş, Çağatay Ateş, Mutlu Koca, Emin Anarım
Internet service providers (ISP) rely on network traffic classifiers to provide secure and reliable connectivity for their users. Encrypted traffic introduces a challenge as attacks are no longer viable using classic Deep Packet Inspection (DPI) techniques. Distinguishing encrypted from non-encrypted traffic is the first step in addressing this challenge. Several attempts have been conducted to identify encrypted traffic. In this work, we compare the detection performance of DPI, traffic pattern, and randomness tests to identify encrypted traffic in different levels of granularity. In an experimental study, we evaluate these candidates and show that a traffic pattern-based classifier outperforms others for encryption detection.
Authored by Hossein Doroud, Ahmad Alaswad, Falko Dressler
The growing number of cybersecurity incidents and the always increasing complexity of cybersecurity attacks is forcing the industry and the research community to develop robust and effective methods to detect and respond to network attacks. Many tools are either built upon a large number of rules and signatures which only large third-party vendors can afford to create and maintain, or are based on complex artificial intelligence engines which, in most cases, still require personalization and fine-tuning using costly service contracts offered by the vendors.This paper introduces an open-source network traffic monitoring system based on the concept of cyberscore, a numerical value that represents how a network activity is considered relevant for spotting cybersecurity-related events. We describe how this technique has been applied in real-life networks and present the result of this evaluation.
Authored by Luca Deri, Alfredo Cardigliano
Current intrusion detection techniques cannot keep up with the increasing amount and complexity of cyber attacks. In fact, most of the traffic is encrypted and does not allow to apply deep packet inspection approaches. In recent years, Machine Learning techniques have been proposed for post-mortem detection of network attacks, and many datasets have been shared by research groups and organizations for training and validation. Differently from the vast related literature, in this paper we propose an early classification approach conducted on CSE-CIC-IDS2018 dataset, which contains both benign and malicious traffic, for the detection of malicious attacks before they could damage an organization. To this aim, we investigated a different set of features, and the sensitivity of performance of five classification algorithms to the number of observed packets. Results show that ML approaches relying on ten packets provide satisfactory results.
Authored by Idio Guarino, Giampaolo Bovenzi, Davide Di Monda, Giuseppe Aceto, Domenico Ciuonzo, Antonio Pescapè