The wide application of deep learning techniques is boosting the regulation of deep learning models, especially deep neural networks (DNN), as commercial products. A necessary prerequisite for such regulations is identifying the owner of deep neural networks, which is usually done through the watermark. Current DNN watermarking schemes, particularly white-box ones, are uniformly fragile against a family of functionality equivalence attacks, especially the neuron permutation. This operation can effortlessly invalidate the ownership proof and escape copyright regulations. To enhance the robustness of white-box DNN watermarking schemes, this paper presents a procedure that aligns neurons into the same order as when the watermark is embedded, so the watermark can be correctly recognized. This neuron alignment process significantly facilitates the functionality of established deep neural network watermarking schemes.
Authored by Fang-Qi Li, Shi-Lin Wang, Yun Zhu
When we setup a computer network, we need to know if an attacker can get into the system. We need to do a series of test that shows the vulnerabilities of the network setup. These series of tests are commonly known Penetration Test. The need for penetration testing was not well known before. This paper highlights how penetration started and how it became as popular as it has today. The internet played a big part into the push to getting the idea of penetration testing started. The styles of penetration testing can vary from physical to network or virtual based testing which either can be a benefit to how a company becomes more secure. This paper presents the steps of penetration testing that a company or organization needs to carry out, to find out their own security flaws.
Authored by Devin Sweigert, Md Chowdhury, Nafiz Rifat
With the future 6G era, spiking neural networks (SNNs) can be powerful processing tools in various areas due to their strong artificial intelligence (AI) processing capabilities, such as biometric recognition, AI robotics, autonomous drive, and healthcare. However, within Cyber Physical System (CPS), SNNs are surprisingly vulnerable to adversarial examples generated by benign samples with human-imperceptible noise, this will lead to serious consequences such as face recognition anomalies, autonomous drive-out of control, and wrong medical diagnosis. Only by fully understanding the principles of adversarial attacks with adversarial samples can we defend against them. Nowadays, most existing adversarial attacks result in a severe accuracy degradation to trained SNNs. Still, the critical issue is that they only generate adversarial samples by randomly adding, deleting, and flipping spike trains, making them easy to identify by filters, even by human eyes. Besides, the attack performance and speed also can be improved further. Hence, Spike Probabilistic Attack (SPA) is presented in this paper and aims to generate adversarial samples with more minor perturbations, greater model accuracy degradation, and faster iteration. SPA uses Poisson coding to generate spikes as probabilities, directly converting input data into spikes for faster speed and generating uniformly distributed perturbation for better attack performance. Moreover, an objective function is constructed for minor perturbations and keeping attack success rate, which speeds up the convergence by adjusting parameters. Both white-box and black-box settings are conducted to evaluate the merits of SPA. Experimental results show the model's accuracy under white-box attack decreases by 9.2S% 31.1S% better than others, and average success rates are 74.87% under the black-box setting. The experimental results indicate that SPA has better attack performance than other existing attacks in the white-box and better transferability performance in the black-box setting,
Authored by Xuanwei Lin, Chen Dong, Ximeng Liu, Yuanyuan Zhang
It is well-known that the most existing machine learning (ML)-based safety-critical applications are vulnerable to carefully crafted input instances called adversarial examples (AXs). An adversary can conveniently attack these target systems from digital as well as physical worlds. This paper aims to the generation of robust physical AXs against face recognition systems. We present a novel smoothness loss function and a patch-noise combo attack for realizing powerful physical AXs. The smoothness loss interjects the concept of delayed constraints during the attack generation process, thereby causing better handling of optimization complexity and smoother AXs for the physical domain. The patch-noise combo attack combines patch noise and imperceptibly small noises from different distributions to generate powerful registration-based physical AXs. An extensive experimental analysis found that our smoothness loss results in robust and more transferable digital and physical AXs than the conventional techniques. Notably, our smoothness loss results in a 1.17 and 1.97 times better mean attack success rate (ASR) in physical white-box and black-box attacks, respectively. Our patch-noise combo attack furthers the performance gains and results in 2.39 and 4.74 times higher mean ASR than conventional technique in physical world white-box and black-box attacks, respectively.
Authored by Inderjeet Singh, Toshinori Araki, Kazuya Kakizaki
Recent advancements in Deep Neural Networks (DNNs) have enabled widespread deployment in multiple security-sensitive domains. The need for resource-intensive training and the use of valuable domain-specific training data have made these models the top intellectual property (IP) for model owners. One of the major threats to DNN privacy is model extraction attacks where adversaries attempt to steal sensitive information in DNN models. In this work, we propose an advanced model extraction framework DeepSteal that steals DNN weights remotely for the first time with the aid of a memory side-channel attack. Our proposed DeepSteal comprises two key stages. Firstly, we develop a new weight bit information extraction method, called HammerLeak, through adopting the rowhammer-based fault technique as the information leakage vector. HammerLeak leverages several novel system-level techniques tailored for DNN applications to enable fast and efficient weight stealing. Secondly, we propose a novel substitute model training algorithm with Mean Clustering weight penalty, which leverages the partial leaked bit information effectively and generates a substitute prototype of the target victim model. We evaluate the proposed model extraction framework on three popular image datasets (e.g., CIFAR-10/100/GTSRB) and four DNN architectures (e.g., ResNet-18/34/Wide-ResNetNGG-11). The extracted substitute model has successfully achieved more than 90% test accuracy on deep residual networks for the CIFAR-10 dataset. Moreover, our extracted substitute model could also generate effective adversarial input samples to fool the victim model. Notably, it achieves similar performance (i.e., 1-2% test accuracy under attack) as white-box adversarial input attack (e.g., PGD/Trades).
Authored by Adnan Rakin, Md Chowdhuryy, Fan Yao, Deliang Fan
Web browsers are among the most important but also complex software solutions to access the web. It is therefore not surprising that web browsers are an attractive target for attackers. Especially in the last decade, security researchers and browser vendors have developed sandboxing mechanisms like security-relevant HTTP headers to tackle the problem of getting a more secure browser. Although the security community is aware of the importance of security-relevant HTTP headers, legacy applications and individual requests from different parties have led to possible insecure configurations of these headers. Even if specific security headers are configured correctly, conflicts in their functionalities may lead to unforeseen browser behaviors and vulnerabilities. Recently, the first work which analyzed duplicated headers and conflicts in headers was published by Calzavara et al. at USENIX Security [1]. The authors focused on inconsistent protections by using both, the HTTP header X-Frame-Options and the framing protection of the Content-Security-Policy.We extend their work by analyzing browser behaviors when parsing duplicated headers, conflicting directives, and values that do not conform to the defined ABNF metalanguage specification. We created an open-source testbed running over 19,800 test cases, at which nearly 300 test cases are executed in the set of 66 different browsers. Our work shows that browsers conform to the specification and behave securely. However, all tested browsers behave differently when it comes, for example, to parsing the Strict-Transport-Security header. Moreover, Chrome, Safari, and Firefox behave differently if the header contains a character, which is not allowed by the defined ABNF. This results in the protection mechanism being fully enforced, partially enforced, or not enforced and thus completely bypassable.
Authored by Hendrik Siewert, Martin Kretschmer, Marcus Niemietz, Juraj Somorovsky
The popularity of portable web browsers is increasing due to its convenient and compact nature along with the benefit of the data being stored and transferred easily using a USB drive. As technology gets updated frequently, developers are working on web browsers that can be portable in nature with additional security features like private mode browsing, built in ad blockers etc. The increased probability of using portable web browsers for carrying out nefarious activities is a result of cybercriminals with the thought that if they use portable web browsers in private mode it won't leave a digital footprint. Hence, the research paper aims at performing a comparative study of four portable web browsers namely Brave, TOR, Vivaldi, and Maxthon along with various memory acquisition tools to understand the quantity and quality of the data that can be recovered from the memory dump in two different conditions that is when the browser tabs were open and when the browser tabs were closed in a system to aid the forensic investigators.
Authored by Meenu Hariharan, Akash Thakar, Parvesh Sharma
To keep up with the continuous modernization of web applications and to facilitate their development, a large number of new features are introduced to the web platform every year. Although new web features typically undergo a security review, issues affecting the privacy and security of users could still surface at a later stage, requiring the deprecation and removal of affected APIs. Furthermore, as the web evolves, so do the expectations in terms of security and privacy, and legacy features might need to be replaced with improved alternatives. Currently, this process of deprecating and removing features is an ad-hoc effort that is largely uncoordinated between the different browser vendors. This causes a discrepancy in terms of compatibility and could eventually lead to the deterrence of the removal of an API, prolonging potential security threats. In this paper we propose a progressive security mechanism that aims to facilitate and standardize the deprecation and removal of features that pose a risk to users’ security, and the introduction of features that aim to provide additional security guarantees.
Authored by Tom Van Goethem, Wouter Joosen
Payment is an essential part of e-commerce. Merchants usually rely on third-parties, so-called payment processors, who take care of transferring the payment from the customer to the merchant. How a payment processor interacts with the customer and the merchant varies a lot. Each payment processor typically invents its own protocol that has to be integrated into the merchant’s application and provides the user with a new, potentially unknown and confusing user experience.Pushed by major companies, including Apple, Google, Master-card, and Visa, the W3C is currently developing a new set of standards to unify the online checkout process and “streamline the user’s payment experience”. The main idea is to integrate payment as a native functionality into web browsers, referred to as the Web Payment APIs. While this new checkout process will indeed be simple and convenient from an end-user perspective, the technical realization requires rather significant changes to browsers.Many major browsers, such as Chrome, Firefox, Edge, Safari, and Opera, already implement these new standards, and many payment processors, such as Google Pay, Apple Pay, or Stripe, support the use of Web Payment APIs for payments. The ecosystem is constantly growing, meaning that the Web Payment APIs will likely be used by millions of people worldwide.So far, there has been no in-depth security analysis of these new standards. In this paper, we present the first such analysis of the Web Payment APIs standards, a rigorous formal analysis. It is based on the Web Infrastructure Model (WIM), the most comprehensive model of the web infrastructure to date, which, among others, we extend to integrate the new payment functionality into the generic browser model.Our analysis reveals two new critical vulnerabilities that allow a malicious merchant to over-charge an unsuspecting customer. We have verified our attacks using the Chrome implementation and reported these problems to the W3C as well as the Chrome developers, who have acknowledged these problems. Moreover, we propose fixes to the standard, which by now have been adopted by the W3C and Chrome, and prove that the fixed Web Payment APIs indeed satisfy strong security properties.
Authored by Quoc Do, Pedram Hosseyni, Ralf Küsters, Guido Schmitz, Nils Wenzler, Tim Würtele
We performed a large-scale online survey (n=1,880) to study the padlock icon, an established security indicator in web browsers that denotes connection security through HTTPS. In this paper, we evaluate users’ understanding of the padlock icon, and how removing or replacing it might influence their expectations and decisions. We found that the majority of respondents (89%) had misconceptions about the padlock’s meaning. While only a minority (23%-44%) referred to the padlock icon at all when asked to evaluate trustworthiness, these padlock-aware users reported that they would be deterred from a hypothetical shopping transaction when the padlock icon was absent. These users were reassured after seeing secondary UI surfaces (i.e., Chrome Page Info) where more verbose information about connection security was present.We conclude that the padlock icon, displayed by browsers in the address bar, is still misunderstood by many users. The padlock icon guarantees connection security, but is often perceived to indicate the general privacy, security, and trustworthiness of a website. We argue that communicating connection security precisely and clearly is likely to be more effective through secondary UI, where there is more surface area for content. We hope that this paper boosts the discussion about the benefits and drawbacks of showing passive security indicators in the browser UI.
Authored by Emanuel von Zezschwitz, Serena Chen, Emily Stark
Modern web applications are getting more sophisticated by using frameworks that make development easy, but pose challenges for security analysis tools. New analysis techniques are needed to handle such frameworks that grow in number and popularity. In this paper, we describe Gelato that addresses the most crucial challenges for a security-aware client-side analysis of highly dynamic web applications. In particular, we use a feedback-driven and state-aware crawler that is able to analyze complex framework-based applications automatically, and is guided to maximize coverage of security-sensitive parts of the program. Moreover, we propose a new lightweight client-side taint analysis that outperforms the state-of-the-art tools, requires no modification to browsers, and reports non-trivial taint flows on modern JavaScript applications. Gelato reports vulnerabilities with higher accuracy than existing tools and achieves significantly better coverage on 12 applications of which three are used in production.
Authored by Behnaz Hassanshahi, Hyunjun Lee, Paddy Krishnan
Today, many internet-based applications, especially e-commerce and banking applications, require the transfer of personal data and sensitive data such as credit card information, and in this process, all operations are carried out over the Internet. Users frequently perform these transactions, which require high security, on web sites they access via web browsers. This makes the browser one of the most basic software on the Internet. The security of the communication between the user and the website is provided with SSL certificates, which is used for server authentication. Certificates issued by Certificate Authorities (CA) that have passed international audits must meet certain conditions. The criteria for the issuance of certificates are defined in the Baseline Requirements (BR) document published by the Certificate Authority/Browser (CA/B) Forum, which is accepted as the authority in the WEB Public Key Infrastructure (WEB PKI) ecosystem. Issuing the certificates in accordance with the defined criteria is not sufficient on its own to establish a secure SSL connection. In order to ensure a secure connection and confirm the identity of the website, the certificate validation task falls to the web browsers with which users interact the most. In this study, a comprehensive SSL certificate public key infrastructure (SSL Test Suite) was established to test the behavior of web browsers against certificates that do not comply with BR requirements. With the designed test suite, it is aimed to analyze the certificate validation behaviors of web browsers effectively.
Authored by Merve Şimşek, Tamer Ergun, Hüseyin Temuçin
Nowadays, the number of new websites in Thailand has been increasing every year. However, there is a lack of security on some of those websites which causes negative effects and damage. This has also resulted in numerous violations. As a result, these violations cause delays in the situation analysis. Additionally, the cost of effective and well-established digital forensics tools is still expensive. Therefore, this paper has presented the idea of using freeware digital forensics tools to test their performances and compare them with the standards of the digital forensics process. The results of the paper suggest that the tested tools have significant differences in functions and process. WEFA Web Forensics tool is the most effective tool as it supports 3 standards up to 8 out of 10 processes, followed by Browser History View which supports 7 processes, Browser History Spy and Browser Forensic Web Tool respectively, supports 5 processes. The Internet history Browser supports 4 processes as compared to the basic process of the standardization related to forensics.
Authored by Kiattisak Janloy, Pongsarun Boonyopakorn
A rendering regression is a bug introduced by a web browser where a web page no longer functions as users expect. Such rendering bugs critically harm the usability of web browsers as well as web applications. The unique aspect of rendering bugs is that they affect the presented visual appearance of web pages, but those web pages have no pre-defined correct appearance. Therefore, it is challenging to automatically detect errors in their appearance. In practice, web browser vendors rely on non-trivial and time-prohibitive manual analysis to detect and handle rendering regressions. This paper proposes R2Z2, an automated tool to find rendering regressions. R2Z2 uses the differential fuzz testing approach, which repeatedly compares the rendering results of two different versions of a browser while providing the same HTML as input. If the rendering results are different, R2Z2 further performs cross browser compatibility testing to check if the rendering difference is indeed a rendering regression. After identifying a rendering regression, R2Z2 will perform an in-depth analysis to aid in fixing the regression. Specifically, R2Z2 performs a delta-debugging-like analysis to pinpoint the exact browser source code commit causing the regression, as well as inspecting the rendering pipeline stages to pinpoint which pipeline stage is responsible. We implemented a prototype of R2Z2 particularly targeting the Chrome browser. So far, R2Z2 found 11 previously undiscovered rendering regressions in Chrome, all of which were confirmed by the Chrome developers. Importantly, in each case, R2Z2 correctly reported the culprit commit. Moreover, R2Z2 correctly pin-pointed the culprit rendering pipeline stage in all but one case.
Authored by Suhwan Song, Jaewon Hur, Sunwoo Kim, Philip Rogers, Byoungyoung Lee
Due to the rise of the internet a business model known as online advertising has seen unprecedented success. However, it has also become a prime method through which criminals can scam people. Often times even legitimate websites contain advertisements that are linked to scam websites since they are not verified by the website’s owners. Scammers have become quite creative with their attacks, using various unorthodox and inconspicuous methods such as I-frames, Favicons, Proxy servers, Domains, etc. Many modern Anti-viruses are paid services and hence not a feasible option for most users in 3rd world countries. Often people don’t possess devices that have enough RAM to even run such software efficiently leaving them without any options. This project aims to create a Browser extension that will be able to distinguish between safe and unsafe websites by utilizing Machine Learning algorithms. This system is lightweight and free thus fulfilling the needs of most people looking for a cheap and reliable security solution and allowing people to surf the internet easily and safely. The system will scan all the intermittent URL clicks as well, not just the main website thus providing an even greater degree of security.
Authored by Rehan Fargose, Samarth Gaonkar, Paras Jadhav, Harshit Jadiya, Minal Lopes
Security incident handling and response are essen-tial parts of every organization's information and cyber security. Security incident handling consists of several phases, among which digital forensic analysis has an irreplaceable place. Due to particular digital evidence being recorded at a specific time, timelines play an essential role in analyzing this digital evidence. One of the vital tasks of the digital forensic investigator is finding relevant records in this timeline. This operation is performed manually in most cases. This paper focuses on the possibilities of automatically identifying digital evidence pertinent to the case and proposes a model that identifies this digital evidence. For this purpose, we focus on Windows operating system and the NTFS file system and use outlier detection (Local Outlier Factor method). Collected digital evidence is preprocessed, transformed to binary values, and aggregated by file system inodes and names. Subsequently, we identify digital records (file inodes, file names) relevant to the case. This paper analyzes the combinations of attributes, aggregation functions, local outlier factor parameters, and their impact on the resulting selection of relevant file inodes and file names.
Authored by Eva Marková, Pavol Sokol, Kristína Kováćová
The study focused on assessing and testing Windows 10 to identify possible vulnerabilities and their ability to withstand cyber-attacks. CVE data, alongside other vulnerability reports, were instrumental in measuring the operating system's performance. Metasploit and Nmap were essential in penetration and intrusion experiments in a simulated environment. The study applied the following testing procedure: information gathering, scanning and results analysis, vulnerability selection, launch attacks, and gaining access to the operating system. Penetration testing involved eight attacks, two of which were effective against the different Windows 10 versions. Installing the latest version of Windows 10 did not guarantee complete protection against attacks. Further research is essential in assessing the system's vulnerabilities are recommending better solutions.
Authored by Jasmin Softić, Zanin Vejzović
The era of technology has seen many rising inventions and with that rise, comes the need to secure our systems. In this paper we have discussed how the old generation of people are falling behind at being updated in tandem with technology, and losing track of the knowledge required to process the same. In addition this factor leads to leakage of critical personal information. This paper throws light upon the steps taken in order to exploit the pre-existing operating system, Windows 7, Ultimate, using a ubiquitous framework used by everyone, i.e. Metasploit. It involves installation of a backdoor on the victim machine, from a remote setup, mostly Kali Linux operating machine. This backdoor allows the attackers to create executable files and deploy them in the windows system to gain access on the machine, remotely. After gaining access, manipulation of sensitive data becomes easy. Access to the admin rights of any system is a red alert because it means that some outsider has intense access to personal information of a human being and since data about someone explains a lot of things about them. It basically is exposing and human hate that. It depraves one of their personal identity. Therefore security is not something that should be taken lightly. It is supposed to be dealt with utmost care.
Authored by Ria Thapa, Bhavya Sehl, Suryaansh Gupta, Ankur Goyal
Data leakage by employees is a matter of concern for companies and organizations today. Previous studies have shown that existing Data Leakage Protection (DLP) systems on the market, the more secure they are, the more intrusive and tedious they are to work with. This paper proposes and assesses the implementation of four technologies that enable the development of secure file systems for insider threat-focused, low-intrusive and user-transparent DLP tools. Two of these technologies are configurable features of the Windows operating system (Minifilters and Server Message Block), the other two are virtual file systems (VFS) Dokan and WinFsp, which mirror the real file system (RFS) allowing it to incorporate security techniques. In the assessment of the technologies, it was found that the implementation of VFS was very efficient and simple. WinFsp and Dokan presented a performance of 51% and 20% respectively, with respect to the performance of the operations in the RFS. This result may seem relatively low, but it should be taken into account that the calculation includes read and write encryption and decryption operations as appropriate for each prototype. Server Message Block (SMB) presented a low performance (3%) so it is not considered viable for a solution like this, while Minifilters present the best performance but require high programming knowledge for its evolution. The prototype presented in this paper and its strategy provides an acceptable level of comfort for the user, and a high level of security.
Authored by Isabel Montano, Isabel Díez, Jose Aranda, Juan Diaz, Sergio Cardín, Juan López
Operating systems have various components that produce artifacts. These artifacts are the outcome of a user’s interaction with an application or program and the operating system’s logging capabilities. Thus, these artifacts have great importance in digital forensics investigations. For example, these artifacts can be utilized in a court of law to prove the existence of compromising computer system behaviors. One such component of the Microsoft Windows operating system is Shellbag, which is an enticing source of digital evidence of high forensics interest. The presence of a Shellbag entry means a specific user has visited a particular folder and done some customizations such as accessing, sorting, resizing the window, etc. In this work, we forensically analyze Shellbag as we talk about its purpose, types, and specificity with the latest version of the Windows 11 operating system and uncover the registry hives that contain Shellbag customization information. We also conduct in-depth forensics examinations on Shellbag entries using three tools of three different types, i.e., open-source, freeware, and proprietary tools. Lastly, we compared the capabilities of tools utilized in Shellbag forensics investigations.
Authored by Ashar Neyaz, Narasimha Shashidhar, Cihan Varol, Amar Rasheed
In the computer field, cybersecurity has always been the focus of attention. How to detect malware is one of the focuses and difficulties in network security research effectively. Traditional existing malware detection schemes can be mainly divided into two methods categories: database matching and the machine learning method. With the rise of deep learning, more and more deep learning methods are applied in the field of malware detection. Deeper semantic features can be extracted via deep neural network. The main tasks of this paper are as follows: (1) Using machine learning methods and one-dimensional convolutional neural networks to detect malware (2) Propose a machine The method of combining learning and deep learning is used for detection. Machine learning uses LGBM to obtain an accuracy rate of 67.16%, and one-dimensional CNN obtains an accuracy rate of 72.47%. In (2), LGBM is used to screen the importance of features and then use a one-dimensional convolutional neural network, which helps to further improve the detection result has an accuracy rate of 78.64%.
Authored by Da Huo, Xiaoyong Li, Linghui Li, Yali Gao, Ximing Li, Jie Yuan
Malware detection and analysis can be a burdensome task for incident responders. As such, research has turned to machine learning to automate malware detection and malware family classification. Existing work extracts and engineers static and dynamic features from the malware sample to train classifiers. Despite promising results, such techniques assume that the analyst has access to the malware executable file. Self-deleting malware invalidates this assumption and requires analysts to find forensic evidence of malware execution for further analysis. In this paper, we present and evaluate an approach to detecting malware that executed on a Windows target and further classify the malware into its associated family to provide semantic insight. Specifically, we engineer features from the Windows prefetch file, a file system forensic artifact that archives process information. Results show that it is possible to detect the malicious artifact with 99% accuracy; furthermore, classifying the malware into a fine-grained family has comparable performance to techniques that require access to the original executable. We also provide a thorough security discussion of the proposed approach against adversarial diversity.
Authored by Adam Duby, Teryl Taylor, Gedare Bloom, Yanyan Zhuang
Cyber-attacks against Industrial Control Systems (ICS) can lead to catastrophic events which can be prevented by the use of security measures such as the Intrusion Prevention Systems (IPS). In this work we experimentally demonstrate how to exploit the configuration vulnerabilities of SNORT one of the most adopted IPSs to significantly degrade the effectiveness of the IPS and consequently allowing successful cyber-attacks. We illustrate how to design a batch script able to retrieve and modify the configuration files of SNORT in order to disable its ability to detect and block Denial of Service (DoS) and ARP poisoning-based Man-In-The-Middle (MITM) attacks against a Programmable Logic Controller (PLC) in an ICS network. Experimental tests performed on a water distribution testbed show that, despite the presence of IPS, the DoS and ARP spoofed packets reach the destination causing respectively the disconnection of the PLC from the ICS network and the modification of packets payload.
Authored by Luca Faramondi, Marta Grassi, Simone Guarino, Roberto Setola, Cristina Alcaraz
Consumer IoT devices may suffer malware attacks, and be recruited into botnets or worse. There is evidence that generic advice to device owners to address IoT malware can be successful, but this does not account for emerging forms of persistent IoT malware. Less is known about persistent malware, which resides on persistent storage, requiring targeted manual effort to remove it. This paper presents a field study on the removal of persistent IoT malware by consumers. We partnered with an ISP to contrast remediation times of 760 customers across three malware categories: Windows malware, non-persistent IoT malware, and persistent IoT malware. We also contacted ISP customers identified as having persistent IoT malware on their network-attached storage devices, specifically QSnatch. We found that persistent IoT malware exhibits a mean infection duration many times higher than Windows or Mirai malware; QSnatch has a survival probability of 30% after 180 days, whereby most if not all other observed malware types have been removed. For interviewed device users, QSnatch infections lasted longer, so are apparently more difficult to get rid of, yet participants did not report experiencing difficulty in following notification instructions. We see two factors driving this paradoxical finding: First, most users reported having high technical competency. Also, we found evidence of planning behavior for these tasks and the need for multiple notifications. Our findings demonstrate the critical nature of interventions from outside for persistent malware, since automatic scan of an AV tool or a power cycle, like we are used to for Windows malware and Mirai infections, will not solve persistent IoT malware infections.
Authored by Elsa Rodríguez, Max Fukkink, Simon Parkin, Michel van Eeten, Carlos Gañán
To solve the current problem of scarce information security talents, this paper proposes to design a network information security attack and defense practical training platform based on ThinkPHP framework. It provides help for areas with limited resources and also offers a communication platform for the majority of information security enthusiasts and students. The platform is deployed using ThinkPHP, and in order to meet the personalized needs of the majority of users, support vector machine algorithms are added to the platform to provide a more convenient service for users.
Authored by Shiming Ma