Information security construction is a social issue, and the most urgent task is to do an excellent job in information risk assessment. The bayesian neural network currently plays a vital role in enterprise information security risk assessment, which overcomes the subjective defects of traditional assessment results and operates efficiently. The risk quantification method based on fuzzy theory and Bayesian regularization BP neural network mainly uses fuzzy theory to process the original data and uses the processed data as the input value of the neural network, which can effectively reduce the ambiguity of language description. At the same time, special neural network training is carried out for the confusion that the neural network is easy to fall into the optimal local problem. Finally, the risk is verified and quantified through experimental simulation. This paper mainly discusses the problem of enterprise information security risk assessment based on a Bayesian neural network, hoping to provide strong technical support for enterprises and organizations to carry out risk rectification plans. Therefore, the above method provides a new information security risk assessment idea.
Authored by Zijie Deng, Guocong Feng, Qingshui Huang, Hong Zou, Jiafa Zhang
In today s society, with the continuous development of artificial intelligence, artificial intelligence technology plays an increasingly important role in social and economic development, and hass become the fastest growing, most widely used and most influential high-tech in the world today one. However, at the same time, information technology has also brought threats to network security to the entire network world, which makes information systems also face huge and severe challenges, which will affect the stability and development of society to a certain extent. Therefore, comprehensive analysis and research on information system security is a very necessary and urgent task. Through the security assessment of the information system, we can discover the key hidden dangers and loopholes that are hidden in the information source or potentially threaten user data and confidential files, so as to effectively prevent these risks from occurring and provide effective solutions; at the same time To a certain extent, prevent virus invasion, malicious program attacks and network hackers intrusive behaviors. This article adopts the experimental analysis method to explore how to apply the most practical, advanced and efficient artificial intelligence theory to the information system security assessment management, so as to further realize the optimal design of the information system security assessment management system, which will protect our country the information security has very important meaning and practical value. According to the research results, the function of the experimental test system is complete and available, and the security is good, which can meet the requirements of multi-user operation for security evaluation of the information system.
Authored by Song He, Xiaohong Shi, Yan Huang, Gong Chen, Huihui Tang
As technology has progressed, people have begun to perform various daily tasks by using different online applications and services, which has led to a large number of incidents of identity theft. These unpleasant events incur expensive costs for individuals, companies, and authorities, and as a result, identity theft concerns them greatly. Although scholars of information security have devoted their efforts to developing technology to prevent identity theft, it is not clear what factors influence an individual’s security protection motivation. Few empirical and behavioral studies on this topic have been conducted. To fill this gap, this study extends the protection motivation theory with anxiety, elucidating the influences of a future negative event (identity theft) on an individual’s current emotion, which in turn determines protection motivation. This study proposes a research model that explores the influences of threat appraisal (perceived severity and perceived susceptibility) and coping appraisal (response efficacy and self-efficacy) on anxiety, which affects protection motivation. The results in this study provide a more holistic comprehension of identity theft and protection motivation, and can be referred to when developing efficient security guidance and practices.
Authored by Hsiu-Hua Cheng
This paper conducts an evaluation of two IBM quantum systems: Quantum Eagle r3 (Sherbrooke, 127 qubits) and Falcon r8 (Peekskill, 27 qubits), with an emphasis on benchmarking these systems and their differing approaches to generating Greenberger-Horne-Zeilinger (GHZ) states, a specific type of multi-partite entangled quantum state. Our primary objective is to augment quantum fidelity via depth-reduction circuit designs. Sherbrooke s larger qubit capacity presents significant opportunities for implementing more complex algorithms, thus benefiting quantum cryptography [4], measurement-based quantum computing (MBQC) [5] and quantum simulation [6]. We introduce the Tree-based and Centred-tree-based approaches, enabling the exploitation of entangled states. Our strategies demonstrate promising potential for increasing quantum fidelity and broadening quantum applications. This work lays a firm foundation for subsequent advancements in quantum computing, highlighting the potential for heightened efficiency and versatility in future quantum systems.
Authored by Kuan-Cheng Chen
This paper offers a thorough investigation into quantum cryptography, a security paradigm based on the principles of quantum mechanics that provides exceptional guarantees for communication and information protection. The study covers the fundamental principles of quantum cryptography, mathematical modelling, practical applications, and future prospects. It discusses the representation of quantum states, quantum operations, and quantum measurements, emphasising their significance in mathematical modelling. The paper showcases the real-world applications of quantum cryptography in secure communication networks, financial systems, government and defence sectors, and data centres. Furthermore, it identifies emerging domains such as IoT, 5G networks, blockchain technology, and cloud computing as promising areas for implementing quantum cryptographic solutions. The paper also presents avenues for further research, including post-quantum cryptography, quantum cryptanalysis, multi-party quantum communication, and device-independent quantum cryptography. Lastly, it underscores the importance of developing robust infrastructure, establishing standards, and ensuring interoperability to facilitate widespread adoption of quantum cryptography. This comprehensive exploration of quantum cryptography contributes to the advancement of secure communication, information protection, and the future of information security in the era of quantum technology.
Authored by Atharva Takalkar, Bahubali Shiragapur
Hybrid authenticated key exchange combines cryptography key material from different sources (classical, quantum and post-quantum cryptography) to build protocols that are resilient to catastrophic failures, technology advances and future cryptanalytic attacks. In this work, we propose and implement a triple-hybrid version of the transport layer security network protocol TLS 1.3, combining classical and post-quantum cryptography, and quantum key distribution. We evaluate the performance of this triple-hybrid TLS in an experimental network scenario and our analysis shows that the quantum-resistant feature comes at an increased communication cost of approximately 68 \% over the total time of the composite handshakes. In exchange, our solution is an enhancement to the TLS 1.3 protocol by adding quantum-resistant cryptography schemes.
Authored by Carlos Garcia, Abraham Aguilera, Juan Olmos, Idelfonso Monroy, Simon Rommel
In this modern era, most cryptographic algorithms work on a basic principle to split integers into their primes. But the problem is that mathematics is also evolving at a very fast pace along with computing power so it is now more vulnerable to decryption, for example, one-way functions can be easily reversed along with factoring big integers. So, to solve this issue Quantum Physics gets involved with cryptography which further led to the concept of Quantum Cryptography. Quantum Cryptography is one of the fastest-growing technology in computer science. So, this paper is more focused on Quantum Cryptography technology and how it can be used to make our modern cryptographic era safeguard from top to bottom procedure related to getting more secure Key-transfer. This paper s scope is to cover all the vulnerabilities of the current cryptosystem, the uses of this technology in the real-world scenario, the limitations when used in real-world situations, and also what will be the future of Quantum Cryptography and the path it should head towards. We have tried to use tools and protocols which is modified to use the quantum key transfer by which the user s using it will not have access to each other s personal information, instead of sharing any private or public key in advance, we transfer an unordered quantum transmission which consists of a very little flash of polarized light.
Authored by Gurkirat Singh, Aman Singh, N Sreenarayanan
In a traditional voting system, voters have to reach the voting system to cast their votes. It is difficult for the elderly and for those living in remote localities to cast a vote. In the era of digital advancements, remote electronic voting has emerged as an efficient means of engaging citizens in decision-making processes. However, ensuring fairness and mitigating fraud in elections remain significant challenges. This research paper proposes a novel approach called Quantum Secret Sharing (QSS) combined with the quantum binary voting protocol, leveraging the capabilities of the IBM Quantum Experience platform. By incorporating established security features and introducing new criteria, this protocol aims to surpass the limitations of classical voting systems. The research involves the creation of communication circuits using IBM Quantum Experience and subsequent analysis through quantum state tomography. By integrating the principles of QSS and the quantum binary voting protocol, the proposed approach addresses the limitations of classical voting systems. The protocol satisfies the standards of traditional voting systems while introducing new criteria to overcome their shortcomings. Through the utilization of IBM Quantum Experience, secure communication circuits are established, and the outcomes are analyzed using quantum state tomography, ensuring the fairness and accuracy of the voting process. It integrates quantum cryptography, quantum communication, and classical cryptography techniques to create a robust and tamper-resistant voting protocol. By employing quantum superposition, the protocol enables voters to cast their votes in multiple states simultaneously, making it extremely difficult for a malicious person to intercept or alter individual votes. Furthermore, quantum entanglement ensures that any unauthorized attempt to measure or manipulate the quantum states would result in detectable changes, enhancing the overall security of the voting process.
Authored by Pragati Bhale, Digambar Padulkar, Jibi Abraham
Over the past decade, we ve witnessed a remarkable and rapid surge in the realm of high-performance computing. The entire computing landscape, encompassing cloud and fog computing, has seen an unprecedented surge in popularity. Cloud computing, a system interconnecting myriad components, delivers application, data, and storage services over the internet. Quantum computing, on the other hand, harnesses the remarkable phenomena of quantum mechanics like superposition and entanglement for computational purposes. This paper serves as an expansive introduction to the fundamental principles, historical evolution, and breakthroughs in quantum computing, shedding light on its applications in network technology and cryptography. Moreover, it delves into the exciting potential for future game development empowered by quantum technology. In particular, we ll uncover the latest strides in cognitive networking and cryptography, drawing attention to the cutting-edge developments. Finally, we ll scrutinize the on-going research endeavours and lingering questions demanding further exploration within the dynamic realm of quantum computing.
Authored by Javed Moazzam, Rahul Pawar, Mayank Khare
The globe is observing the emergence of the Internet of Things more prominently recognized as IoT. In this day and age, there exist numerous technological apparatuses that possess the capability to be interconnected with the internet and can amass, convey, and receive information concerning the users. This technology endeavors to simplify existence, however, when the users information is the central concern for IoT operation, it is necessary to adhere to security measures to guarantee privacy and prevent the exploitation of said information. The customary cryptographic algorithms, such as RSA, AES, and DES, may perform adequately with older technologies such as conventional computers or laptops. Nevertheless, contemporary technologies are heading towards quantum computing, and this latter form possesses a processing capability that can effortlessly jeopardize the aforementioned cryptographic algorithms. Therefore, there arises an imperative necessity for a novel and resilient cryptographic algorithm. To put it differently, there is a requirement to devise a fresh algorithm, impervious to quantum computing, that can shield the information from assaults perpetrated utilizing quantum computing. IoT is one of the domains that must ensure the security of the information against malevolent activities. Besides the conventional cryptography that enciphers information into bits, quantum encryption utilizes qubits, specifically photons and photon polarization, to encode data.
Authored by Modafar Ati
The security of our data is the prime priority as it is said “Data is the new Oil”. Nowadays, most of our communications are either recorded or forged. There are algorithms used under classical encryption, such as Rivest-Shamir-Adleman (RSA), digital signature, elliptic-curve cryptography (ECC), and more, to protect our communication and data. However, these algorithms are breakable with the help of Quantum Cryptography. In addition, this technology provides the most secure form of communication between entities under the fundamental law of Physics. Here, we are abiding to discuss the term “Quantum Cryptography.” The aim of this paper is to explore the knowledge related to the Quantum Cryptography, Quantum Key Distribution; and their elements, implementation, and the latest research. Moreover, exploration of the loopholes and the security of Internet of Things (IoT) infrastructure and current used classical cryptographic algorithms are described in the paper.
Authored by Harshita Jasoliya, Kaushal Shah
Recent advances in quantum computing and quantum information theory represent a severe threat to the current state of the art of data protection. In this context, new quantum-safe techniques have emerged in recent decades, which fall into post-quantum and unconditionally secure cryptographic schemes. The firsts rely on computational problems supposed to be hard also for quantum computers. In contrast, the seconds do not depend on the difficulty of a computational problem and are therefore immune to quantum power. In particular, unconditionally secure techniques include Quantum Key Distribution (QKD) protocols for transmitting secret keys thanks to the quantum properties of light. In this work, we discuss QKD networks and post-quantum algorithms, considering their opportunities and limitations and showing that reconciliation between these two directions of cryptography is feasible and necessary for the quantum era.This work is part of the activities of the PON project “Development of quantum systems and technologies for IT security in communication networks” (QUANCOM) which aims to the realization of a metropolitan quantum communication network through the collaboration between universities, research centers and companies operating in the communication market area.
Authored by Eufemia Lella, Alberto Gatto, Andrea Pazienza, Diego Romano, Pietro Noviello, Felice Vitulano, Giovanni Schmid
Cryptography was introduced to prevent a third party from accessing and learning the contents of private messages sent during a communication process. Quantum Cryptography looks promising to provide a new level of secure communication by applying quantum mechanics concepts to cryptography. The research in the domain emphasizes that such systems can detect eavesdropping and ensure that it does not occur at all. This paper reviews the existing state of quantum cryptography, which includes an introduction to quantum computing and quantum key distribution algorithm, special attention is given to the implementation and working of the BB84 Protocol. It also provides a glimpse of post-quantum cryptography.
Authored by Ishika Giroti, Meenakshi Malhotra
Encryption defined as change information process (which called plaintext) into an unreadable secret format (which called ciphertext). This ciphertext could not be easily understood by somebody except authorized parson. Decryption is the process to converting ciphertext back into plaintext. Deoxyribonucleic Acid (DNA) based information ciphering techniques recently used in large number of encryption algorithms. DNA used as data carrier and the modern biological technology is used as implementation tool. New encryption algorithm based on DNA is proposed in this paper. The suggested approach consists of three steps (conventional, stream cipher and DNA) to get high security levels. The character was replaced by shifting depend character location in conventional step, convert to ASCII and AddRoundKey was used in stream cipher step. The result from second step converted to DNA then applying AddRoundKey with DNA key. The evaluation performance results proved that the proposed algorithm cipher the important data with high security levels.
Authored by Ahmed Hadi, Sameer Abdulshaheed, Salim Wadi
Securing communication and information is known as cryptography. To convert messages from plain text to cipher text and the other way around. It is the process of protecting the data and sending it to the right audience so they can understand and process it. Hence, unauthorized access is avoided. This work suggests leveraging DNA technology for encrypt and decrypt the data. The main aim of utilizing the AES in this stage will transform ASCII code to hexadecimal to binary coded form and generate DNA. The message is encrypted with a random key. Shared key used for encrypt and decrypt the data. The encrypted data will be disguised as an image using steganography. To protect our data from hijackers, assailants, and muggers, it is frequently employed in institutions, banking, etc.
Authored by Manoj C, Anil J, Shashidhara D, Prem M
The problem of information privacy has grown more significant in terms of data storage and communication in the 21st century due to the technological explosion during which information has become a highly important strategic resource. The idea of employing DNA cryptography has been highlighted as a potential technology that offers fresh hope for unbreakable algorithms since standard cryptosystems are becoming susceptible to assaults. Due to biological DNA s outstanding energy efficiency, enormous storage capacity, and extensive parallelism, a new branch of cryptography based on DNA computing is developing. There is still more study to be done since this discipline is still in its infancy. This work proposes a DNA encryption strategy based on cryptographic key generation techniques and chaotic diffusion operation.
Authored by Renjith Ravi, S. Goyal, Sardar Islam
Cryptography and steganography is a method to secure private data. Those methods can also be combined for a more robust data security method. In this paper, we proposed a combination of cryptography and steganography methods that exploit some properties of Deoxyribonucleic Acid (DNA) for securing private data. The proposed work aims to enhance a POST-quantum DNA cryptography method by combining it with the steganography method. There are two parts to the proposed method; the first one is to encrypt private messages using a Kyber-DNA cryptography method. The second one is to embed encrypted private messages into a DNA sequence. The proposed method was then compared to another similar method RSA-DNA, El Gamal-DNA, and ECC-DNA. The proposed method is also compared with a similar POST-quantum method, that is NTRU-DNA. All those methods are compared in embedding speed test and extracting speed test. From those tests, it can be concluded that the proposed method has performance slightly lower than El Gamal-DNA and ECC-DNA but faster than RSA-DNA and NTRU-DNA
Authored by Bambang Harjito, Faisal Rahutomo, U. Satriyo, Heri Prasetyo
In this paper will be described a new security protocol for secret sharing and hiding, which use selected personal features. Such technique allows to create human-oriented personalized security protocols dedicated for particular users. Proposed method may be applied in dispersed computing systems, where secret data should be divided into particular number of parts.
Authored by Marek Ogiela, Urszula Ogiela
A hybrid cryptosystem is developed in the paper “Hybrid Data Encryption and Decryption Using Hybrid RSA and DNA” by combining the advantages of asymmetric-key (public-key) and symmetric-key (private-key) cryptosystems. These two types of cryptosystems use a variety of key types. The approach addresses worries about the users right to privacy, authentication, and accuracy by using a data encryption procedure that is secure both ways. Data encoding and data decryption are two separate security techniques used by the system. It has been suggested that a hybrid encryption algorithm be used for file encryption to handle the issues with efficiency and security. RSA and DNA are combined in this method. The outcome so the tests show that the RSA and DNA hybrid encryption algorithms are suitable for use. In this particular study effort, the hybrid encryption and decoding for cloud processing with IOT devices used the DNA and RSA algorithms.
Authored by Prashant Bhati, Saurabh Tripathi, Shristi Kumari, Suryansh Sachan, Reena Sharma
Information exchange occurs all the time in today’s internet era. Some of the data are public, and some are private. Asymmetric cryptography plays a critical role in securing private data transfer. However, technological advances caused private data at risk due to the presence of quantum computers. Therefore, we need a new method for securing private data. This paper proposes combining DNA cryptography methods based on the NTRU cryptosystem to enhance security data confidentiality. This method is compared with conventional public key cryptography methods. The comparison shows that the proposed method has a slow encryption and decryption time compared to other methods except for RSA. However, the key generation time of the proposed method is much faster than other methods tested except for ECC. The proposed method is superior in key generation time and considerably different from other tested methods. Meanwhile, the encryption and decryption time is slower than other methods besides RSA. The test results can get different results based on the programming language used.
Authored by U. Satriyo, Faisal Rahutomo, Bambang Harjito, Heri Prasetyo
E-health, smart health and telemedicine are examples of sophisticated healthcare systems. For end-to-end communication, these systems rely on digital medical information. Although this digitizing saves much time, it is open source. As a result, hackers could potentially manipulate the digital medical image as it is being transmitted. It is harder to diagnose an actual disease from a modified digital medical image in medical diagnostics. As a result, ensuring the security and confidentiality of clinical images, as well as reducing the computing time of encryption algorithms, appear to be critical problems for research groups. Conventional approaches are insufficient to ensure high-level medical image security. So this review paper focuses on depicting advanced methods like DNA cryptography and Chaotic Map as advanced techniques that could potentially help in encrypting the digital image at an effective level. This review acknowledges the key accomplishments expressed in the encrypting measures and their success indicators of qualitative and quantitative measurement. This research study also explores the key findings and reasons for finding the lessons learned as a roadmap for impending findings.
Authored by N Deepa, N Sivamangai
Counterfeited products are a significant problem in both developed and developing countries and has become more critical as an aftermath of COVID-19, exclusively for drugs and medical equipment’s. In this paper, an innovative approach is proposed to resist counterfeiting which is based on the principles of Synthetic DNA. The proposed encryption approach has employed the distinctive features of synthetic DNA in amalgamation with DNA encryption to provide information security and functions as an anticounterfeiting method that ensures usability. The scheme’s security analysis and proof of concept are detailed. Scyther is used to carry out the formal analysis of the scheme, and all of the modeled assertions are verified without any attacks.
Authored by C.S. Sreeja, Mohammed Misbahuddin
The rate of development in today s IT industry is unprecedented. Information is being stored and transformed at a faster and faster rate. Therefore, the importance of protecting sensitive data is growing. Everyone is concerned about preventing hackers from gaining access to their personal data. Several algorithms from the fields of classical cryptography and steganography can be used to conceal data. DNA cryptography is an emerging field that aims to protect information kept in DNA. DNA cryptography takes use of DNA s innate computing power at the molecular level. In this paper, we are exploring diverse cryptographic algorithms and methods that are used to secure the stored data in DNA. The paper represents the critical review that includes merits and demerits of the diverse cryptographic algorithms for securing the data in DNA.
Authored by Parth Parmar, Jekil Gadhiya, Satvik Vats, Deepak Verma, Krunal Vaghela
Today, Distribution System Operators (DSO) face numerous challenges, such as growth of decentralized power generation, increasing unconventional demands, active network management for peak load- and congestion management. Moreover, DSO also face an accelerated asset ageing while confronted with tight budgets and a strong ROI business case justification. The Digital Transformer Twin is the digital representation of real physical assets and enables the operators to evaluate the Transformer Asset Condition by leveraging software capabilities, AI insights from large datasets as well as academic research results in order to turn data into reality. Thus, trusted and consistent results over the entire transformer life span require also a faithful Digital Transformer Twin over the entire physical transformer life cycle from inception to retirement.
Authored by B. Fischer, K. Viereck, C. Hofmeister
Sustainability within the built environment is increasingly important to our global community as it minimizes environmental impact whilst providing economic and social benefits. Governments recognize the importance of sustainability by providing economic incentives and tenants, particularly large enterprises seek facilities that align with their corporate social responsibility objectives. Claiming sustainability outcomes clearly has benefits for facility owners and facility occupants that have sustainability as part of their business objectives but there are also incentives to overstate the value delivered or only measure parts of the facility lifecycle that provide attractive results. Whilst there is a plethora of research on Building Information Management (BIM) systems within the construction industry there has been limited research on BIM in the facilities management \& sustainability fields. The significant contribution with this research is the integration of blockchain for the purposes of transaction assurance with development of a working model spanning BIM and blockchain underpinning phase one of this research. From an industry perspective the contribution of this paper is to articulate a path to integrate a wide range of mature and emerging technologies into solutions that deliver trusted results for government, facility owners, tenants and other directly impacted stakeholders to assess the sustainability impact.
Authored by Luke Desmomd, Mohamed Salama