Development of a Real-time Location Monitoring App with Emergency Alert Features for Android Devices
Smartphones have completely altered the mobile communication scene. Wi-Fi, global positioning system navigation, high-resolution cameras, and touchscreens with high-speed internet access are just some of the cutting-edge capabilities that these devices offer, allowing users to stay in constant contact with the present. Since many of these features are embedded deeply in the mobile operating system, they are typically inaccessible to the average user. However, Google released Android, a revolutionary operating system. Because of its open system architecture, this platform encourages third-party development and a debugging environment that users may change to create their own unique apps. In this research project, we examine the development of an Emergency Based Remote Collateral Tracking System app on the Android mobile platform from Google. There are three main forms of emergencies: those involving the heart, those involving personal safety, and those involving the roads. Users who own and operate motor vehicles are the primary focus of this app. Our program can keep tabs on the driver’s pulse by connecting to a heart rate monitor. Our application has a backup function in case of anomalies. First, it sends SMS messages containing the user’s location data after using GPS to do so.
Authored by Dankan Gowda V, Kdv Prasad, R Shekhar, Rachakonda Srinivas, Kale Srinivas, Prasanna Lakineni
These days, safety measures can t be neglected. In a world where digital risks are becoming more prevalent, efficient security has become an essential aspect of any system or business. Protecting valuables now requires a defensive strategy with several layers. Security systems play an important role in today s modern, industrialised society. The security system is primarily intended to address the need for the protection of hard-earned treasures (jewels). Unlike the current method, which uses physical locks that are readily falsified, this system uses Bluetooth and RFID tags in conjunction with digital (electronic) code locks to unlock the door automatically once the series of authentications is validated and emits alarm noises when any discrepancy happens. The ability of subsequent layers of defense to prevent intrusion is unaffected by the failure of an earlier one to provide detection. In this effort, we use IoT to design and build a fully automated security system that will operate with no more human intervention when it is put into place. In addition, the system s overall cost of adoption is far lower than that of any other consumer security solution now on the market.
Authored by Somya Prakash, Sabita Mali, Farida Ali
In today s world, security is a very important issue. People should always keep their belongings safe. To increase security, this research work proposes a IoT-based smart lockers with sensors and access keys with security, verification, and user-friendly tools. This model alerts the user when someone else tries to access their locker and quickly sends an alarm to the authorized user, and provides the option to either grant or reject access to the valid user. In this paper, smart locker is kept registered early to use a locker in the bank, office, home, etc. to ensure safety. The user demands to send an unlock direction with the help of microcontroller NUDE MCU ESP8266 and after accepting the command from the cloud (BLYNK APP), only the user can unlock the closet and access the valuables. This study has also introduced the encroachment detection in lockers with sensors and finally installed smart lockers with fire alarms for security and reliability.
Authored by Bhawna Khokher, Mamta Savadatti, Anish Kumar, T.V. Nikhil, Pranav Raj, Aditya Thakre
Electronic devices and appliances are increasingly becoming a quintessential part of every household with the recent development and innovations in the field of technology affecting the day-to-day lives of individuals. Automation has caught the fame as people struggle to keep up with the demands of work, making it an easy solution to operate devices and machines to meet the individual needs. The paper describes the creation and execution of an affordable, versatile, and safe home automation system that is controlled through a mobile phone. The system relies on an independent Arduino BT board, which is connected to home appliances via relays attached to its input/output ports. Wireless communication is used to connect the mobile phone and the Arduino BT board. The system is designed to be both economical and expandable, allowing for control of a range of devices with minimal changes to its basic structure. The focus of the paper is to explain how to manage and regulate electronic devices using Android smartphones. The paper also outlines a home automation system that prioritizes security and safeguards user privacy. This system is designed to be affordable and flexible, making it possible to control various devices with minimalchanges to its core structure. Additionally, the appliances in the system are protected by passwords to ensure that only authorized users can access them.
Authored by Priyanka Bhardwaj, Manidipa Roy, Sanjay Singh, Vanshika Jain, Mega Novita, Agus Mukhtar, Yuris Setyoadi
The increasing prevalence of cyber threats necessitates the exploration of cybersecurity challenges in sustainable operating systems. This research paper addresses these challenges by examining the dynamic landscape of cyber threats and the modifications required in operating systems to ensure robust security measures. Through the classification of these threats, the diverse nature of attacks faced by operating systems is revealed, highlighting the need for proactive security measures. Furthermore, the study investigates current cyber security solutions and prevention mechanisms employed to mitigate these threats. It also explores the modifications and challenges that operating systems must undergo in response to cybersecurity crimes, emphasizing the significance of proactive measures to address vulnerabilities exploited by cybercriminals.
Authored by Shadi bi, Samar Hendawi, Islam Altalahin, Muder Almiani, Ala Mughaid
Technology has improved, and smart locking systems have become more sophisticated. In this case, the android-based Smart System is primarily intended for multimode operations. Such a system is necessary in banks and businesses since it provides f u n c t i o n s that let users control locks. The implementation’s efficiency the system is incredibly helpful because of its functionality and user-friendly interface. Some homeowners aim to connect their home’s numerous home automation devices. Those connected to a Windows-based PC are the most popular home controllers. In our study, we introduced a form of smart technology that utilized Bluetooth while using a mobile smartphone. Consequently, using it will be simpler and more effective. Additionally, it supported the free and open-source Android and Arduino platforms. This paper proposes a door lock automation system that uses an Android smartphone with Bluetooth as the first piece of hardware. Following a description of the design and software development process, a Bluetooth-based Smartphone application for locking and unlocking doors is demonstrated. The task module acts as the agent in the hardware design for the door-lock system, the Arduino microcontroller serves as the controller and data processing hub, and the solenoid acts as the door lock output. The results of each test show that it is compatible with the original plan for this study.
Authored by B. Swathi, Aditya Kanoi, Harshvardhan Kumar, Jaiswal Sinha, Gana Gajjala
This paper focuses on the adoption of biometric and RFID security gadgets as innovative solutions for enhancing door lock systems. The traditional reliance on physical keys has proven vulnerable to security breaches, prompting the need for more robust measures. Biometric features such as Fingerprint, Voice and Bluetooth offer unparalleled security by leveraging unique biological characteristics for authentication. Additionally, integrating RFID technology enables convenient access control through assigned cards or tags, eliminating the need for physical keys or complex passwords. The combination of these cutting-edge solutions establishes a comprehensive security infrastructure, significantly reducing risks associated with conventional lock systems. This research highlights the benefits and applications of these technologies in various settings, emphasizing their role in creating a safer environment for individuals and organizations.
Authored by Sherly Alphonse, Chitranshu Gupta, Mohammad Warsi, Karmokar Shantu, Aryaman Tamotia
Every person must take precautions in the current pandemic crisis, such as wearing protective gear, keeping a safe distance, cleaning their hands, and avoiding touching anything unless absolutely essential. However, there is a potential of disease transmission while touching objects like tables, doors, cars, and other things. Therefore, this study has proposed a proposal to stop them; the project is based on automation, in which an automatic door closing and opening mechanism has been created once the voice command is given. In this scenario, when a proper voice command is provided, the mechanism is activated to open and close the door automatically. Hence that there is no direct human contact with the door, which will assist stop or slow the spread of pandemic disease. The developed Arduino-based module can automatically close and open the door. These devices produced a regulator for the input, which uses the Android s Bluetooth signal. Arduino-based Android customers may easily open and close the door with their phones by communicating via Bluetooth technology. Within range, Bluetooth Classic (BT) makes it possible to connect an Android device. You may open a door with a personalized audio message and operate it by speaking into modules. Here, everyone is using various modules, such as voice commands, to control various modules. When a voice command is provided, the door will open and close on its own.
Authored by C.Kanmani Pappa, N. Ashokkumar, P. Nagarajan, Kavitha Thandapani
The advancement of technology is challenging for designers of the security systems. When securing a property or different valuable items, it must be kept into account that often criminals are equipped with performant electric or electronic devices, constructed to disable security systems and to remove any trace of their activity. In consequence, reliable and fast responding security systems must be constructed. This paper proposes a design based on two different microcontrollers, both using Real Time Operating Systems, which has an increased capability to resist at attacks from intruders, and to warn the authorities as soon as a unauthorized access was detected in the secured space. This project is characterized by a low-cost implementation and an efficient operation, given that it is fast responding, and it contains two physically separated modules, making its disabling by intruders more difficult.
Authored by Iustin Constantin, Alexandru Dinu
In recent years, the advancement of sensor technologies has revolutionized the field of security systems, enabling more accurate and reliable monitoring solutions. Radar technology, known for its ability to operate effectively in various weather conditions and lighting environments, provides a distinct advantage in maintaining consistent surveillance. By utilizing radio waves, the system can accurately detect movement within its coverage area, making it well-suited for both indoor and outdoor applications. The smart radar security system is an innovative approach that harnesses the power of radar technology to create a robust and efficient security solution. This system employs radar sensors to detect and track movement, presence, and object classification in diverse environments, offering significant advantages over traditional security methods. The core functionality of the proposed system revolves around its ability to detect motion with high precision. The proposed approach represents a significant step forward in security solutions by leveraging radar technology s unique advantages. Hence, this work aims to develop a protype for accurately detection the obstacle motion related to radar applications. Bluetooth technology has been utilized for establishing user interface and receiving alerts in the mobile application. Users can receive real-time alerts and notifications on their smartphones or connected devices whenever unauthorized movement is detected. Additionally, the proposed system can be seamlessly integrated with existing smart home or security systems, allowing for comprehensive and centralized surveillance management. As technology continues to evolve, this system showcases the potential for cutting-edge solutions that prioritize both security and privacy.
Authored by Prudhvi Budumuru, Santosh Chegondi, Leela M, M Arjun, M Rohith, N Harikrishna